
Theory of Computation
Unit 4-6: Turing Machines and Computability

Decidability and Encoding Turing Machines Decidability and Encoding Turing Machines

Complexity and NP Completeness

Syedur Rahman
syedurrahman@gmail.com

© 2007 Syedur Rahman

Turing Machines

Q The set of finite states

Σ The finite set of input symbols

Γ The complete set of tape symbols. Σ z Γ

F A set of finite or accepting states. F z QF A set of finite or accepting states. F z Q

δ The transition function, where arguments (q, X) are
the current state q and the tape symbol the head is on, X,
such that δ(q, X) gives a triple (p, Y, D), the destination
state p, the tape symbol Y that will replace X, and the
direction the tape head moves afterwards, i.e. ← or →

B or Џ The blank tape symbol.

© 2007 Syedur Rahman

The following Turing Machine M1 accepts the language
expressed as 0n1n where neN ∧ n>0. The tape alphabet is

{0, 1, X, Y, Џ) where Џ is the blank symbol.

© 2007 Syedur Rahman

The given Turing Machine is designed to perform proper

subtraction on two numbers m and n input on the tape as 0m10n.

After the completion of its operation, it leaves 0max(m – n, 0)

surrounded by blanks on the tape.

© 2007 Syedur Rahman

Further Reading

You should read up on the following topics which were

covered in class:

�A run of a Turing Machine showing each configuration
i.e. (tape symbols on left of head, current state, rest of tape symbols)i.e. (tape symbols on left of head, current state, rest of tape symbols)

�Non-deterministic Turing Machines (not examinable)

�Multi-tape Turing Machines (not examinable)

Encoding Turing Machines

We shall assume the states are q1, q2, q3, …, qk for some k,

where the start state is q1 and q2 is the only accepting

state.

We shall assume the tape symbols are X1, X2 …, Xm for

some m. X and X will always be 0 and 1, whereas X will
1 2 m

some m. X1 and X2 will always be 0 and 1, whereas X3 will

be Џ. Other symbols can be X4, X5… etc.

We shall refer to directions ← and → as D1 and D2

respectively.

© 2007 Syedur Rahman

A sample encoding

M = ({q1, q2, q3}, {0, 1}, {0, 1, Џ}, δ, q1, Џ, {q2})

Where δ consists of the following rules:

δ(q1, 1) = (q3, 0, →)

δ(q3, 0) = (q1, 1, →)

δ(q3, 1) = (q2, 0, →)

δ(q3, Џ) = (q3, 1, ←)

© 2007 Syedur Rahman

A sample encoding

M = ({q1, q2, q3}, {0, 1}, {0, 1, Џ}, δ, q1, Џ, {q2})

Where δ consists of the following rules:

Binary Encoding:

δ(q1, 1) = (q3, 0, →) 0100100010100

δ(q3, 0) = (q1, 1, →) 0001010100100

δ(q3, 1) = (q2, 0, →) 00010010010100

δ(q3, Џ) = (q3, 1, ←) 0001000100010010

Complete Encoding for Machine M
01001000101001100010101001001100010010010100110001000100010010

© 2007 Syedur Rahman

Decidability

Problems that can be solved are called decidable.

A language L is recursively enumerable (RE) if L = L(M) for some TM

M, i.e. there exists a Turing Machine that will halt and accept when a

string that is a member of L is input into it. However, if strings that are

not members of L are input into M, the machine may either halt in a not members of L are input into M, the machine may either halt in a

non-accepting state or continue to run indefinitely. In any case it will

not accept that particular string.

For a decidable or recursive language however the TM must not only

halt and accept strings which are members of L but it also must halt and

reject (by entering a non-accept state) string which are not members of

L. Intuitively, all decidable languages are RE but not all RE languages

are decidable.

© 2007 Syedur Rahman

RE but Undecidable: An Example

There are Recursively Enumerable languages that are
undecidable. E.g. the Universal Language LU consists of pairs
(M, w) such that:

1. M is the binary coding of a Turing Machine1. M is the binary coding of a Turing Machine

2. w is a string of 0’s and 1’s

3. M accepts input w

This problem is RE since one can construct the TM M and then
run w on it, and M would halt if it is accepted. However we can
not be sure what will happen is w is not a member of L(M), so the
language is not decidable.

© 2007 Syedur Rahman

Not RE: An Example
Some languages are not recursively enumerable at all. E.g.: The
self-diagonalisation language Ld, is the set of strings wi such that
wi is not in L(Mi). That is Ld consists of all strings w such that the
TM M whose code is w does not accept when given w as input.

Lets say we constructed a TM Mi such that L(Mi) = Ld and the
coding for Mi is wi.

�If w is in L , then M accepts w . But w can not be a member of �If wi is in Ld, then Mi accepts wi. But wi can not be a member of
Ld if it is accepted by its machine Mi. So wi can not be a member
of Ld.

�If wi is not a member of Ld, it will not be accepted by Mi. So,
since wi is not accepted by its own machine Mi, wi must be a
member of Ld.

As a result of this contradiction, we conclude such a Turing
Machine Mi such that L(Mi) = Ld can never be constructed so the
language Ld is not recursively enumerable.

© 2007 Syedur Rahman

Reduction

If we can convert instances of a problem P1 into instances

of another problem P2 that have the same answer, then we

say that P1 reduces to P2.

We can therefore say P2 is at least as hard as P1.

Theorem: If P1 is reducible to P2 then:

If P1 is undecidable, then so is P2.

If P1 is non-RE, then so is P2.

Please note this does not work the other way round!

© 2007 Syedur Rahman

Classes P and NP

A Turing Machine M is said to be of time complexity T(n) if
whenever M is given an input of length n, M halts after making
at most T(n) moves, regardless of whether this leads to an
accept state. T(n) can be any function. E.g. T(n) = 10n or T(n)
= n2+10 or T(n) = 2n+10n

We say a language L is in class P if a deterministic TM MWe say a language L is in class P if a deterministic TM M
exists such that L(M) = L and its time complexity T(n) is a
polynomial.

We say a language L is in class NP if a non-deterministic TM
M exists such that L(M) = L and its time complexity T(n) is a
polynomial.

Needless to say, all P problems are NP problems as well.

© 2007 Syedur Rahman

Quick Revision of Complexity

Big-O (upper bound): Let f and g be functions from the set of integers or the
set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if
there are constants C and k such that: |f(x)| ≤ C|g(x)| whenever x>k. We say
that f(x) grows no faster than g(x).

E.g. x2 + x + 1 is O(x2), can be proved if C=3 and k=2

7x2 is O(x3), can be proved if C=1 and k=7

x2 is O(x2 + x + 1), can be proved if C=1 and k=1x2 is O(x2 + x + 1), can be proved if C=1 and k=1

Big-Omega (lower bound): Let f and g be functions from the set of integers
or the set of real numbers to the set of real numbers. We say that f(x) is
Ω(g(x)) if there are constants C and k such that: |f(x)| ≥ |g(x)| whenever x>k.
Generally if f(x) is Ω(g(x)) then g(x) is O(f(x)). We say that f(x) grows no
faster than g(x).

Big-Theta (upper and lower bound): Let f and g be functions from the set of
integers or the set of real numbers to the set of real numbers. We say that
f(x) is Θ(g(x)), if and only if f(x) is O(g(x)) and g(x) is O(f(x)). We say that
f(x) is of order g(x).

© 2007 Syedur Rahman

Commonly Used Terminology for

Complexity of Algorithms

Complexity Terminology

O(1)

O(log n)

O(n)

Constant Complexity

Logarithmic Complexity

Linear ComplexityO(n)

O(n log n)

O(nk)

O(kn), where k>1

O(n!)

Linear Complexity

n log n Complexity

Polynomial Complexity

Exponential Complexity

Factorial Complexity

This list is in order of increasing complexity.
n is a variable whereas k is a constant.

© 2007 Syedur Rahman

P, NP and Reductions

Let us assume P1 is reducible to P2.

Therefore, in order for an instance of P1 to be reduced to

instance(s) of P2, a construction algorithm C must perform

some conversion. If P2 is in class P then Is P1 in P?

© 2007 Syedur Rahman

P, NP and Reductions

Let us assume P1 is reducible to P2.

Therefore, in order for an instance of P1 to be reduced to

instance(s) of P2, a construction algorithm C must perform

some conversion. If P2 is in class P then Is P1 in P?

Answer: Only if the construction algorithm C is of

polynomial time complexity.

What if C is of exponential time complexity?

If P2 is O(nk) and C is O(en), then P1 is O(nk+en) i.e. O(en),

i.e. P1 is not in class P

© 2007 Syedur Rahman

NP Complete and NP Hard

A language problem L is NP-Complete if:

�L is in NP

�For every language L’ in NP, there is a polynomial-time
reduction of L’ to L.

NP-Complete z NP – PNP-Complete z NP – P

If L is not in NP, we call it NP-Hard. It is generally
acceptable to use “intractable” to mean NP-Hard and it is
enough to show that L can only be solved in exponential
time or worse, to prove it is NP-Hard.

© 2007 Syedur Rahman

