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Turing Machines

Q The set of finite states

Σ The finite set of input symbols

Γ The complete set of tape symbols. Σ z Γ

F A set of finite or accepting states. F z QF A set of finite or accepting states. F z Q

δ The transition function, where arguments (q, X) are 
the current state q and the tape symbol the head is on, X, 
such that δ(q, X) gives a triple (p, Y, D), the destination 
state p, the tape symbol Y that will replace X, and the 
direction the tape head moves afterwards, i.e. ← or →

B or Џ The blank tape symbol.
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The following Turing Machine M1 accepts the language 
expressed as 0n1n where neN ∧ n>0. The tape alphabet is 

{0, 1, X, Y, Џ) where Џ is the blank symbol.
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The given Turing Machine is designed to perform proper

subtraction on two numbers m and n input on the tape as 0m10n.

After the completion of its operation, it leaves 0max(m – n, 0)

surrounded by blanks on the tape.
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Further Reading

You should read up on the following topics which were 

covered in class:

�A run of a Turing Machine showing each configuration 
i.e. (tape symbols on left of head, current state, rest of tape symbols)i.e. (tape symbols on left of head, current state, rest of tape symbols)

�Non-deterministic Turing Machines (not examinable)

�Multi-tape Turing Machines (not examinable)



Encoding Turing Machines

We shall assume the states are q1, q2, q3, …, qk for some k, 

where the start state is q1 and q2 is the only accepting 

state.

We shall assume the tape symbols are X1, X2 …, Xm for 

some m. X and X will always be 0 and 1, whereas X will 
1 2 m

some m. X1 and X2 will always be 0 and 1, whereas X3 will 

be Џ. Other symbols can be X4, X5… etc.

We shall refer to directions ← and → as D1 and D2

respectively.
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A sample encoding

M = ({q1, q2, q3}, {0, 1}, {0, 1, Џ}, δ, q1, Џ, {q2})

Where δ consists of the following rules:

δ(q1, 1) = (q3, 0, →)

δ(q3, 0) = (q1, 1, →)

δ(q3, 1) = (q2, 0, →)

δ(q3, Џ) = (q3, 1, ←)
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A sample encoding

M = ({q1, q2, q3}, {0, 1}, {0, 1, Џ}, δ, q1, Џ, {q2})

Where δ consists of the following rules:

Binary Encoding:

δ(q1, 1) = (q3, 0, →) 0100100010100

δ(q3, 0) = (q1, 1, →) 0001010100100

δ(q3, 1) = (q2, 0, →) 00010010010100

δ(q3, Џ) = (q3, 1, ←) 0001000100010010

Complete Encoding for Machine M
01001000101001100010101001001100010010010100110001000100010010
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Decidability

Problems that can be solved are called decidable.

A language L is recursively enumerable (RE) if L = L(M) for some TM 

M, i.e. there exists a Turing Machine that will halt and accept when a 

string that is a member of L is input into it. However, if strings that are 

not members of L are input into M, the machine may either halt in a not members of L are input into M, the machine may either halt in a 

non-accepting state or continue to run indefinitely. In any case it will 

not accept that particular string. 

For a decidable or recursive language however the TM must not only 

halt and accept strings which are members of L but it also must halt and 

reject (by entering a non-accept state) string which are not members of 

L. Intuitively, all decidable languages are RE but not all RE languages 

are decidable. 
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RE but Undecidable: An Example

There are Recursively Enumerable languages that are 
undecidable. E.g. the Universal Language LU consists of pairs 
(M, w) such that:

1. M is the binary coding of a Turing Machine1. M is the binary coding of a Turing Machine

2. w is a string of 0’s and 1’s

3. M accepts input w

This problem is RE since one can construct the TM M and then 
run w on it, and M would halt if it is accepted. However we can 
not be sure what will happen is w is not a member of L(M), so the 
language is not decidable.
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Not RE: An Example
Some languages are not recursively enumerable at all. E.g.: The 
self-diagonalisation language Ld, is the set of strings wi such that 
wi is not in L(Mi). That is Ld consists of all strings w such that the 
TM M whose code is w does not accept when given w as input.

Lets say we constructed a TM Mi such that L(Mi) = Ld and the 
coding for Mi is wi.

�If w is in L , then M accepts w . But w can not be a member of �If wi is in Ld, then Mi accepts wi. But wi can not be a member of 
Ld if it is accepted by its machine Mi. So wi can not be a member 
of Ld.

�If wi is not a member of Ld, it will not be accepted by Mi. So, 
since wi is not accepted by its own machine Mi, wi must be a 
member of Ld.

As a result of this contradiction, we conclude such a Turing 
Machine Mi such that L(Mi) = Ld can never be constructed so the 
language Ld is not recursively enumerable.
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Reduction

If we can convert instances of a problem P1 into instances 

of another problem P2 that have the same answer, then we 

say that P1 reduces to P2. 

We can therefore say P2 is at least as hard as P1.

Theorem: If P1 is reducible to P2 then:

If P1 is undecidable, then so is P2.

If P1 is non-RE, then so is P2.

Please note this does not work the other way round!
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Classes P and NP

A Turing Machine M is said to be of time complexity T(n) if 
whenever M is given an input of length n, M halts after making 
at most T(n) moves, regardless of whether this leads to an 
accept state. T(n) can be any function. E.g. T(n) = 10n or T(n) 
= n2+10 or T(n) = 2n+10n

We say a language L is in class P if a deterministic TM MWe say a language L is in class P if a deterministic TM M
exists such that L(M) = L and its time complexity T(n) is a 
polynomial.

We say a language L is in class NP if a non-deterministic TM 
M exists such that L(M) = L and its time complexity T(n) is a 
polynomial.

Needless to say, all P problems are NP problems as well.
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Quick Revision of Complexity

Big-O (upper bound): Let f and g be functions from the set of integers or the 
set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if 
there are constants C and k such that: |f(x)| ≤ C|g(x)| whenever x>k. We say 
that f(x) grows no faster than g(x).

E.g. x2 + x + 1 is O(x2), can be proved if C=3 and k=2

7x2  is O(x3), can be proved if C=1 and k=7

x2 is O(x2 + x + 1), can be proved if C=1 and k=1x2 is O(x2 + x + 1), can be proved if C=1 and k=1

Big-Omega (lower bound): Let f and g be functions from the set of integers 
or the set of real numbers to the set of real numbers. We say that f(x) is    
Ω(g(x)) if there are constants C and k such that: |f(x)| ≥ |g(x)| whenever x>k. 
Generally if f(x) is Ω(g(x)) then g(x) is O(f(x)). We say that f(x) grows no 
faster than g(x).

Big-Theta (upper and lower bound): Let f and g be functions from the set of 
integers or the set of real numbers to the set of real numbers. We say that 
f(x) is Θ(g(x)), if and only if f(x) is O(g(x)) and g(x) is O(f(x)). We say that 
f(x) is of order g(x). 
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Commonly Used Terminology for 

Complexity of Algorithms

Complexity Terminology

O(1)

O(log n)

O(n)

Constant Complexity

Logarithmic Complexity

Linear ComplexityO(n)

O(n log n)

O(nk)

O(kn), where k>1

O(n!)

Linear Complexity

n log n Complexity

Polynomial Complexity

Exponential Complexity

Factorial Complexity

This list is in order of increasing complexity. 
n is a variable whereas k is a constant.
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P, NP and Reductions

Let us assume P1 is reducible to P2. 

Therefore, in order for an instance of P1 to be reduced to 

instance(s) of P2, a construction algorithm C must perform 

some conversion. If P2 is in class P then Is P1 in P?
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P, NP and Reductions

Let us assume P1 is reducible to P2. 

Therefore, in order for an instance of P1 to be reduced to 

instance(s) of P2, a construction algorithm C must perform 

some conversion. If P2 is in class P then Is P1 in P?

Answer: Only if the construction algorithm C is of 

polynomial time complexity. 

What if C is of exponential time complexity? 

If P2 is O(nk) and C is O(en), then P1 is O(nk+en) i.e. O(en), 

i.e. P1 is not in class P
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NP Complete and NP Hard

A language problem L is NP-Complete if:

�L is in NP

�For every language L’ in NP, there is a polynomial-time 
reduction of L’ to L.

NP-Complete z NP – PNP-Complete z NP – P

If L is not in NP, we call it NP-Hard. It is generally 
acceptable to use “intractable” to mean NP-Hard and it is 
enough to show that L can only be solved in exponential 
time or worse, to prove it is NP-Hard.
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