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Regular Languages
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Regular Languages and Operators



Regular Expressions



Examples of Regular Expressions

Given Σ = {a, b}. The following are regular expressions specifying 

languages over Σ.

ab + ba

a*b*.

(ba)* (ba)* + a*b*

(ba)*(ab + bba + Λ)



Examples of Regular Expressions

Given Σ = {a, b}. The following are regular expressions specifying 
languages over Σ.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number 
of (or  0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a 
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the 
string is contained by either of the two previous languages.

(ba)*(ab + bba + Λ) specifies a language that contains strings 
starting with a number of (or 0) repetitions of ba followed by ab, 
bba or nothing.



Deterministic Finite State Automata 
An Example of a DFA:

From [MOC]



From [MOC]



Formal Definition of a DFA

From [MOC]



Languages accepted by a DFA
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Definition of DFA: An Example

From [MOC]



DFA: A Practical Example

An Automatic Door Controller

States Q = {OPEN, CLOSED}

Alphabet Σ = {FRONT, REAR, BOTH,  NEITHER}
FRONT: someone standing on front pad only
REAR: someone standing on rear pad only

BOTH: people standing on both pads

NEITHER: no one standing on either pad



DFA: A Practical Example

From [MOC]



Construct DFAs from the following expressions

Given Σ = {a, b}. The following are regular expressions specifying 
languages over Σ.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number 
of (or  0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a 
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the 
string is contained by either of the two previous languages.

(ba)*(ab + bba + Λ) specifies a language that contains strings 
starting with a number of (or 0) repetitions of ba followed by ab, 
bba or nothing.



Regular Languages and Expressions

From [MOC]



Nondeterministic Finite State Automata (NFA)

From [MCS]



Example of an NFA

From [MCS]



Examples of NFAs

From [MCS]



Example of an NFA
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DFA vs NFA

From [MCS]



Every NFA has an equivalent DFA

From [Plump]



NFAs are often used as simpler representations of DFAs
Remember that all DFAs are NFAs as well but not all NFAs are DFAs

Example: All strings containing 1 in the third position from the end

From [Plump]



Converting any NFA to a DFA

From [MCS]



Converting an NFA to a DFA

From [MCS]



Converting an NFA to a DFA
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Regular Languages and FSAs

A language is regular if and only if a finite state automata 

(deterministic or non-deterministic) can be constructed that 

accepts it.

If two languages L1 and L2 are regular, the following 

languages are regular as well:

L1 U L2 L1 . L2 L1 . L1 L1 . L1 . L1 

L1
n L1* L1∩ L2 L1 - L2 L1

This can be proved by showing how each of the given 

languages are accepted by finite state automata (NFAs or 

DFAs) via construction.



Union of Languages, L1 U L2

L(DFA1)=L1

L(DFA2)=L2

L(DFA3) = L3 = L1 U L2

From [MCS]



L1 U L2 using an NFA

We can create a new NFA that accepts L(DFA1) U L(DFA2) by 
adding a new start state i and adding  transitions from i to the 

start states of DFA1 and DFA2

i

From [MCS]



Concatenation of Languages, L1.L2

L(DFA1)=L1

L(DFA2)=L2

L(DFA3) = L3 = L1.L2

From [MCS]



L1.L2
using an NFA

From [MCS]



Star closure of a language, L1* using an NFA

From [MCS]



Negation of a Language, L1

Notice that all DFA’s have 

implicit transitions to a failure or 

rejection state, if there is no 

transition mentioned for a state 

for a particular character of the 

alphabet.

So for any DFA1, one could 

construct DFA2 which includes 

explicitly mentions all the 

missing transitions leading to a 

failure/rejection state f. 

Transitions for all symbols from f 

must lead back to f.

L(DFA1)=L1

Σ = {x, y}

L1 = {y}*.x.{λλλλ, y}

E1 = y*x(λλλλ + y)

L(DFA2)=L1

From [MCS]



Negation of a Language, L1

�For DFA1, construct DFA2

which includes explicitly 

mentions all the missing 

transitions leading to a failure 

state f.

�Construct DFA3, which is copy 

of DFA2 with all the accepting 

states in DFA2 as non-

accepting states in DFA3 and 

all the other states in DFA2 as 

accepting states in DFA3. 

Make sure that f is an 

acceptance state.

�DFA3 now accepts the 

complement of L1
Σ = {x, y}

L
1

= {y}*.x.{λλλλ, y}

L(DFA2)=L1

L(DFA3)=L1

From [MCS]


