
Theory of Computation
Unit 2: Regular Languages, DFAs and NFAs

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org

Theory of Computation Lecture Notes

Acknowledgements

These lecture notes contain material from the following
sources:

[Plump] D.J. Plump: Theory of Computation, Dept
of Computer Science, University of York, 2003

[MOC] Models of Computation, Oxford University
Computing Laboratory, University of Oxford,
2005.

[MCS] Mathematics for Computer Scientists, Dept
of Computer Science, University of York, 2003

© 2006 Syedur Rahman

Preliminary Concepts

From [Plump]

Preliminary Concepts (cntd.)

From [Plump]

Preliminary Concepts (cntd.)

From [Plump]

Preliminary Concepts (cntd.)

From [Plump]

Regular Languages

From [Plump]

Regular Languages and Operators

Regular Expressions

Examples of Regular Expressions

Given Σ = {a, b}. The following are regular expressions specifying

languages over Σ.

ab + ba

a*b*.

(ba)* (ba)* + a*b*

(ba)*(ab + bba + Λ)

Examples of Regular Expressions

Given Σ = {a, b}. The following are regular expressions specifying
languages over Σ.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number
of (or 0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the
string is contained by either of the two previous languages.

(ba)*(ab + bba + Λ) specifies a language that contains strings
starting with a number of (or 0) repetitions of ba followed by ab,
bba or nothing.

Deterministic Finite State Automata
An Example of a DFA:

From [MOC]

From [MOC]

Formal Definition of a DFA

From [MOC]

Languages accepted by a DFA

From [MOC]

Definition of DFA: An Example

From [MOC]

DFA: A Practical Example

An Automatic Door Controller

States Q = {OPEN, CLOSED}

Alphabet Σ = {FRONT, REAR, BOTH, NEITHER}
FRONT: someone standing on front pad only
REAR: someone standing on rear pad only

BOTH: people standing on both pads

NEITHER: no one standing on either pad

DFA: A Practical Example

From [MOC]

Construct DFAs from the following expressions

Given Σ = {a, b}. The following are regular expressions specifying
languages over Σ.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number
of (or 0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the
string is contained by either of the two previous languages.

(ba)*(ab + bba + Λ) specifies a language that contains strings
starting with a number of (or 0) repetitions of ba followed by ab,
bba or nothing.

Regular Languages and Expressions

From [MOC]

Nondeterministic Finite State Automata (NFA)

From [MCS]

Example of an NFA

From [MCS]

Examples of NFAs

From [MCS]

Example of an NFA

From [MCS]

DFA vs NFA

From [MCS]

Every NFA has an equivalent DFA

From [Plump]

NFAs are often used as simpler representations of DFAs
Remember that all DFAs are NFAs as well but not all NFAs are DFAs

Example: All strings containing 1 in the third position from the end

From [Plump]

Converting any NFA to a DFA

From [MCS]

Converting an NFA to a DFA

From [MCS]

Converting an NFA to a DFA

From [MCS]

Regular Languages and FSAs

A language is regular if and only if a finite state automata

(deterministic or non-deterministic) can be constructed that

accepts it.

If two languages L1 and L2 are regular, the following

languages are regular as well:

L1 U L2 L1 . L2 L1 . L1 L1 . L1 . L1

L1
n L1* L1∩ L2 L1 - L2 L1

This can be proved by showing how each of the given

languages are accepted by finite state automata (NFAs or

DFAs) via construction.

Union of Languages, L1 U L2

L(DFA1)=L1

L(DFA2)=L2

L(DFA3) = L3 = L1 U L2

From [MCS]

L1 U L2 using an NFA

We can create a new NFA that accepts L(DFA1) U L(DFA2) by
adding a new start state i and adding transitions from i to the

start states of DFA1 and DFA2

i

From [MCS]

Concatenation of Languages, L1.L2

L(DFA1)=L1

L(DFA2)=L2

L(DFA3) = L3 = L1.L2

From [MCS]

L1.L2
using an NFA

From [MCS]

Star closure of a language, L1* using an NFA

From [MCS]

Negation of a Language, L1

Notice that all DFA’s have

implicit transitions to a failure or

rejection state, if there is no

transition mentioned for a state

for a particular character of the

alphabet.

So for any DFA1, one could

construct DFA2 which includes

explicitly mentions all the

missing transitions leading to a

failure/rejection state f.

Transitions for all symbols from f

must lead back to f.

L(DFA1)=L1

Σ = {x, y}

L1 = {y}*.x.{λλλλ, y}

E1 = y*x(λλλλ + y)

L(DFA2)=L1

From [MCS]

Negation of a Language, L1

�For DFA1, construct DFA2

which includes explicitly

mentions all the missing

transitions leading to a failure

state f.

�Construct DFA3, which is copy

of DFA2 with all the accepting

states in DFA2 as non-

accepting states in DFA3 and

all the other states in DFA2 as

accepting states in DFA3.

Make sure that f is an

acceptance state.

�DFA3 now accepts the

complement of L1
Σ = {x, y}

L
1

= {y}*.x.{λλλλ, y}

L(DFA2)=L1

L(DFA3)=L1

From [MCS]

