Theory of Computation

Unit 2: Regular Languages, DFAs and NFAs

Syedur Rahman

Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org



Theory of Computation Lecture Notes

Acknowledgements

These lecture notes contain material from the following
sources:

[Plump] D.J. Plump: Theory of Computation, Dept
of Computer Science, University of York, 2003

[MOC] Models of Computation, Oxtord University
Computing Laboratory, University of Oxford,
2005.

[MCS| Mathematics for Computer Scientists, Dept
of Computer Science, University of York, 2003

© 2006 Syedur Rahman



Preliminary Concepts
An s a finite set (denoted by X, I, ... ) the elements
of which are called

Examples: ¥ = {0, 1} and I'={a, b...., 2}

A over an alphabet X is a finite sequence of syvmbols
from X, written by ]uxtdpnwun svimbols. The IS
denoted by A _ﬁ(}thvl authors use A\ or €).

Examples: 0111011 and watermelon are strings over X and
[. respectively.

From [Plump]



Preliminary Concepts (cntd.)

The of a strine w. denoted bv |w!. is its leneth as a
' . 1

sequerce.

Examples: |watermelon| = 10 and |[A] = 0.

The over an alphabet X is denoted by 27
(Note that A € X7 and that X7 is infinite unless X is the empty
set.)

A . or for short, over an alphabet
> 18 a subset of X7

Examples: | -
AL 0,00, 001} and {w € {0.1}"
are languages over {0, 1}.

lw| = 2" for some n > 0}

From [Plump]



Preliminary Concepts (cntd.)

Let w, v € X7, The of u and v. denoted bv uwv.
s recursively (or inductively) defined as follows:

(Lur=uitv=A

2)uv = (uw)a if v = wa for some w € X7 and a € X
(2) uwv = (uw)a if v =wa for some w € X" and a € X

- For Ll._ L-j Q >

LiLo=A{uv|ué€ L andv € Ly.}

From [Plump]



Preliminary Concepts (cntd.)

Notation: Fora € X, we X", L C X" and & > 1.

a* = aa---a
wh = ww---w
Ik = ... [

where in each case there are k factors on the right-hand side.

For k=0: a" =w" = A and L' = {A}.

- For a language L.

L™ = O L' and LT = O L'
1= i=1

From [Plump]



Regular Languages
The over an alphabet X are inductively
defined as follows:

(1) The empty set O and {a}. for each a in X, are regular

laneuages over Y.
(2) If Ly and Ly are regular languages over X, then
LiULs and LiLo and L:i

are recular languages over X,

From [Plump]



Regular Languages and Operators

Let A and B be languages. Define
e Unionn AUB={x:x€ Aorx € B}
e Concatenationn A-B={zxy:x€ Aandy € B}
e Star: A* = {xyx0---21 k> 0andeachx; € A}
Note: € (the empty string) is in A* (the case of k = ()
Example. Take A = { good, bad } and B = { boy, girl }.
A« B = { goodboy. goodgirl, badboy, badgirl }
A* =
{ €, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, -« + }
Informally A* ={e} U AU (4-A) U (A-A-4A) U ---



Regular Expressions

Regular languages can be specified by
which are inductively defined as follows:

(1) 0 and a. for each a in . are regular expressions over X,
(2) It vy and ry are regular expressions over . then

are regular expressions over X,



Examples of Regular Expressions

Given X = {a, b}. The following are regular expressions specifying
languages over X.

ab + ba
a*b*
(ba)* (ba)* + a*b*

(ba)*(ab + bba + A)



Examples of Regular Expressions

Given X = {a, b}. The following are regular expressions specifying
languages over X.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number
of (or 0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the
string 1s contained by either of the two previous languages.

(ba)*(ab + bba + A) specifies a language that contains strings
starting with a number of (or 0) repetitions of ba followed by ab,
bba or nothing.



Deterministic Finite State Automata
An Example of a DFA:

0 1

(), Q)
ﬁ *‘o—,r’

Key Features:

e There are only finitely different states a finite automaton can be in.
The states in M (= vertices of the graph) are ¢1, ¢2 and ¢3.

® \We do not care about the internal structure of automaton states. All we care

about is which transitions the automaton can make between states.

e A symbol from some finite alphabet 2 is associated with each transition: we

think of elements of 33 as input symbols. The alphabet of M is {0, 1 l.rom MOC]



@ "TET"@

e Thus all possible transitions can be specified by a finite directed graph with
Y -labelled edges.
E.g. At state g, My can
- input 0 and enter state g i.e. §o —G} (Jg. Or
- input 1 and remain in state s i.e. o —l}qz

@ Thereis a distinguished sfart state. In the graph, the start state is indicated by

an arrow pointing at it from nowhere. The start state of M is (.

& [he states are partitioned into accepting states (or final states) and
non-accepting states.
An accepting state is indicated by a (double) circle. The accepting state of

M is ¢ From [MOC]



Formal Definition of a DFA

A deterministic finite automaton (DFA) is a 5-tuple (Q, X, 8, ¢o, F') where
(1) Q is a finite set called the stafes

(i) X2 is a finite set called the alphabet

(i) 0 : Q) X X — Q) is the transition function

(iv) go € @ is the start state

(v) F' C Q is the set of accept states (or final states).

We write ¢ — ¢ to mean d(q, a) = ¢, which we read as “there is an

a-transition from g to ¢"".

From [MOC]



Languages accepted by a DFA

Let M = (@}, 2,0, o, F') be a DFA. L(M), the language recognized (or
accepted) by the DFA M, consists of all strings w = @ dg * * - ¢y, over X
satisfying ¢ —p ¢ where ¢ is a final state. Here

do —>* ¢

means that there exist states ¢1,* *+, gn—1,@n — ¢ (not necessarily all distinct)

such that there are transitions of the form

1 LK gy
Jo——>q1 —> " ——>qn = (

Note
e casen=0.q—* iffg=¢
ecasen=1.q—*¢iff¢g— ¢

A language is called regular if some DFA recognizes it. From [MOC]



Definition of DFA: An Example

Formally M7 = (Q, %, 4, ¢, F') where |
0 1
¢ Q — {QI'!q%QS}
e X=1{0,1} (Tﬁ:>
1 0
e ( is the start state; F' = {qg} __“"'"__""""———"H_
0,1

e ) is given by

0 1
qr | dq1 92
2|43 9
43|92 ¢

L(My) is the set of all binary strings that contain at least one 1, and an even number of
Os follow the last 1.

From [MOC]



DFA: A Practical Example

An Automatic Door Controller

Front
pad

l
Rear
pad

States Q = {OPEN, CLOSED}

Alphabet >~ = {FRONT, REAR, BOTH, NEITHER]}

OPEN

Front
pad

Rear
pad

L

CLOSED

FRONT: someone standing on front pad only
REAR: someone standing on rear pad only

BOTH: people standing on both pads

NEITHER: no one standing on either pad




DFA: A Practical Example

State transition table &:

NEITHER FRONT REAR BOTH

CLOSED | CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN

Start State g, OPEN

BOTH BOTH

O NEITHER O
g __i'-
NG ————T= P L

— U FRONT U

REAR REAR

From [MOC]



Construct DFAs from the following expressions

Given X = {a, b}. The following are regular expressions specifying
languages over X.

ab + ba specifies a language that only contains ab and ba.

a*b* specifies a language that contains only strings of any number
of (or 0) a’s followed by any number of (or 0) b’s.

(ba)* specifies a language that contains only strings containing a
number of (or 0) repetitions of ba.

(ba)* + a*b* specifies a language that contains a string iff the
string 1s contained by either of the two previous languages.

(ba)*(ab + bba + A) specifies a language that contains strings
starting with a number of (or 0) repetitions of ba followed by ab,
bba or nothing.



Regular Languages and Expressions

language regular expression
1a} a
{a,b} a-+b

1a,6} U{d,c} (a+b)+ (b+c)
{a,b}* U{aa,bc} | (a+ b)* 4+ (aa 4+ be)
{a,b}* - {ab,ba}* | (a + b)*(ab + ba)*
{a,b}*U{\,aa}* | (a +b)* + (A + aa)*

+ [S union; . IS concatenation; * star closure

From [MOC]



Nondeterministic Finite State Automata (NFA)

A non-deterministic finite state automaton (NFA) is
specified by a tuple, M =< Q, >, p,1, F' > where

e (), afinite set of states

e > a finite set of possible input symbols, the al-
phabet

e p, a transition relation @ x (XU {\}) x Q
e 7 in ¢, an initial state

e F, asetof final states (FF C Q)

From [MCS]



Example of an NFA

a a
@@

From [MCS]



Examples of NFAs

0
A
/ 0

)\\b

0 0 D “

0,1
———*O* = Q 0,1 0,1
0@

From [MCS]



Example of an NFA

digit
—-@ ¢
\.
digit
(@)

From [MCS]



DFA vs NFA

e In a DFA, at every state ¢, for every symbol ¢, there is a unique @-transition

i.e. there is a unique ¢ such that g — ¢

This is not necessarily so in an NFA. At any state, an NFA may have multiple

d-transitions, or none.

® [n a DFA, transition arrows are labelled by symbols from Y2 in an NFA, they
are labelled by symbols from 2 U {)\ } |.e. an NFA may have A-transitions.

o We may think of the non-determinism as a kind of parallel computation

wherein several processes can be running concurrently.

When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of

these accepts, then the entire computation accepts.

From [MCS]



Every NFA has an equivalent DFA

Observation. Every DFA is an NFA!

Say two automata are equivalent if they accept the same language.

Theorem(Determinization). Every NFA has an equivalent DFA.

Proof. Fixan NFAN = (Q N, Xn,0N, ¢N, FN ), we construct an equivalent
DFAPN = (QpN, Zpn, 0PN, N, Fpv) such that L(N) = L(PN):

e Qpy={S5:5CQn}

e Spy = Sy
¢ S-S nPNifS ={q¢ :3g€ S(¢==¢ inN)}
ooy = {q:an=>q}

o F:deér{SEQ‘PN:FNﬂS#@}
From [Plump]



NFAs are often used as simpler representations of DFAs
Remember that all DFAs are NFAs as well but not all NFAs are DFAs

Example: All strings containing 1 in the third position from the end

‘Qf @)

"’”‘-’“*-’“*-’_‘.
IFERRY:

From [Plump]

DFA:




Converting any NFA to a DFA

Step 1 In the first instance write down the individual transitions as separate labelled
arrows between states

Step 2 — The start state for the new DFA is labelled {gq}
— For each input symbol identify all the transitions that start at gg. Collect
all the resultant states and put them in a set.
In the above example the only transitions that start at go is go — ¢1.
Hence we get {go} — {q1}.
— For each new state {ni,ns,...,n;} repeat:

* For each input symbol a repeat
. Collect all output states for each transition n; —» m; (1<i<
k) into a new state
This process is repeated until no new states are generated.
(In the above example, the initial new state is {qi }.

We get {1} - {q1,¢2} and {q1} N {q1} since there is no b-edge
from g, to g-.
The only new state resulting from the above process is {g1,¢2}.

b
We get {q1,¢2} — {q1,¢2} and {q1, 42} — {1}
No additional new states are generated and the process terminates.)

Step 3 You can now draw the transition diagram for the new DFA

Step 4 The final states in the new DFA are the states () which contain an element

g € () such that ¢ is a final state in the original NFA. From [MCS]



Converting an NFA to a DFA

.‘_') i
Step 1 Step 2
q0—2 = g1 g0} —L = fq1}
gl—4 = qI gl —2L = 41,42}
i
gl—" =gl ali—2 o
gl—L = g2 Wqlq2i— = 1,42}

ala2i—2Lt = @
Step 3
{q0} {q1} lql,q2}

O

From [MCS]
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Converting an NFA to a DFA

[ 8

q0 —Z—?*qo {90} b — {q0,q1}
90 —* 491 | {qo0} — {q1}

20— g1 {a} % {a1}
a1 | {eoa} % {q0,q1}
a0, 1} = {a1}
{q0} y {q0.91}

From [MCS]



Regular Languages and FSAs

A language 1s regular if and only if a finite state automata
(deterministic or non-deterministic) can be constructed that
accepts it.

If two languages L, and L, are regular, the following
languages are regular as well:

L, UL, L, .L, L, .L, L,.L,.L,
L, L* L,NL, L,-L, L,

This can be proved by showing how each of the given
languages are accepted by finite state automata (NFAs or
DFAS) via construction.



Union of Languages, L1 U L2

L(DFA3) = L3= L1 U L2

» So we can always construct a new initial state and make
the arcs from the individual initial states leave this new state
and go to the states of the distinct machines. In the event
that the previous initial states contain no back loops we can
remove the previous initial states.

L(DFA2)=L2

From [MCS]



L1 U L2 using an NFA

We can create a new NFA that accepts L(DFA71) U L(DFA2) by
adding a new start state / and adding transitions from /to the
start states of DFA1 and DFA2

_— DEFEAL

— = DFEA2

DFAL

}

Ao

DFA2

From [MCS]



Concatenation of Languages, L1.1.2

L(DFA2)=L2

L(DFA3) = L3=L1.L2

From each accept state of the first DFA draw an arc to each
state of the second that is the destination of its initial state.
Allow the accept states of the second DFA to continue to
be accept states and let accept states of the first DFA to
be accept states only if the initial state of the second is an
accept state.

From [MCS]



e [n the general case DF Ay is going to have several final
states

LI LZ e Assume that DF Ay has nfinal states
o

e Make n copies of DF Ax

using an NFA

e VWe can make copies of DF Ax by consistently giving new
names to each state in DFAx

e For example we can rename the start state mg to g — <1 in
the copy

e Repeat the above procedure to connect each final state of
DF Ay and the initial state of a copy of DFA» with a A-
transition as shown below

From [MCS]



Star closure of a language, L1* using an NFA

e |n the general case DF A1 Is going to have several final
states

e Assume that DF Ay has n final states

e We connect all the final states and the initial state of DF A4
with A-transitions as shown in the diagram below

From [MCS]



Negation of a Language, L1
2 ={x,y}

L, ={y}.x.{}, y} y Notice that all DFA’s have
* | . . . o e .
E;=y*x(A +Y) implicit transitions to a failure or

0 . rejection state, if there 1s no
transition mentioned for a state

for a particular character of the

HbFAn=L e alphabet.
N So for any DFAIl, one could
construct DFA2 which includes
0 : explicitly mentions all the
missing transitions leading to a
L(DFA2)=L1 .

. _ failure/rejection state f.
‘ \ Transitions for all symbols from
Yo must lead back to f.

From [MCS]



Negation of a Language, L1

v

| '.
L(DFA2)=L1 _

L(DFA3)=L7 ’ Eﬂ
£z {x,y} o Xy >

L1 = {y}*.X.{k, y}

For DFAI, construct DFA2
which  includes  explicitly
mentions all the missing
transitions leading to a failure
state f.

Construct DFA3, which is copy
of DFA2 with all the accepting
states 1n DFA2 as non-
accepting states in DFA3 and
all the other states in DFA2 as

accepting states 1n DFA3.
Make sure that f 1s an
acceptance state.

DFA3 now  accepts the
complement of L1 From [MCS]



