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Binary Numbers

The binary numeral system, or base-2 number system, is 

a numeral system that represents numeric values using 

two symbols, usually 0 and 1. More specifically, the usual 

base-2 system is a positional notation with a radix of 2. 

Owing to its straightforward implementation in electronic 

circuitry, the binary system is used internally by virtually 

all modern computers.
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Binary to Decimal Comparison
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Binary to Decimal Comparison

Addition Comparison
Decimal Addition of Digits 

Examples

�5 + 3 = 8

�7 + 9 = 16 (carry 1)

� and many more…

Binary Addition of Digits (all 
possible)

�0 + 0 = 0

�0 + 1 = 1

�1 + 0 = 1

�1 + 1 = 10 (0 carry:1)

�1+1+1 = 11 (1 carry:1)
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Decimal to Binary Conversion

5310 = ?2

First divide 53 repeatedly by 2

53 / 2 = 26 Rem 1

26 / 2 = 13 Rem 0

13 / 2 = 6 Rem 1

6 / 2 = 3 Rem 0

3 / 2 = 1 Rem 1

1 / 2 = 0 Rem 1

Write the remainders backward

5310 = 1101012



Octal Numeral System

The octal numeral system, or oct for short, is the base-8 
number system, and uses the digits 0 to 7.

Octal numerals can be made from binary numerals by 
grouping consecutive digits into groups of three (starting 
from the right). For example, the binary representation for 
decimal 74 is 1001010, which groups into 001 001 010 —
so the octal representation is 112. 

Note: To convert a decimal number to octal or 
hexadecimal, divide the number repeatedly by 8 or 16 
respectively and the read the remainders backwards.
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Hexadecimal Numeral System

Hexadecimal, base-16, or simply hex, is a numeral 

system with a radix, or base, of 16, usually written 

using the symbols 0–9 and A–F (A=10, B=11, C=12, 

D=13, E=14, F=15).

Its primary purpose is to represent the binary code in a 

format easier for humans to read, and acts as a form of 

shorthand, in which one hexadecimal digit stands in 

place of four binary bits. 

For example, the decimal numeral 79, whose binary 

representation is 01001111, is 4F in hexadecimal (4 = 

0100, F = 1111). 
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Binary, Octal and Hex Conversion

Since 8 = 23 and 16 = 24, it is very simple to convert between octal and 

binary or between hexadecimal and binary numbers, without having to 

convert the number into decimal first.

For converting a binary number into octal, the number can be divided 

into groups of three bits (starting from the right) and each group can be 

written as an octal digit. The reverse can be done to convert the number 

back to binary. Note that each octal digit must be converted into three 

bits (e.g. 78 gives 1112, 28 gives 0102 and not 102)

For converting a binary number into hexadecimal, the number can be 

divided into groups of four bits (starting from the right) and each group 

can be written as an hexadecimal digit. The reverse can be done to 

convert the number back to binary, i.e. each hex digit gives four bits.

What is the easiest way to convert between octal and hexadecimal?
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Digits Required for Numbers

If M is a number containing n digits 

with radix r, we can write: Therefore, the minimum 

number of digits nmin, required 

to represent M in radix r is:

For example, to represent 15502 in hexadecimal (radix 16) we need a 

minimum of (log 15503)/(log 16) = 4.19/1.20 = 3.48 i.e. 4 digits

From [1]
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Negative Binary Numbers

�Sign and Magnitude

�Bias/Excess-N

�One’s Complement

�Two’s Complement
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Sign and Magnitude

−12711111111

......

−010000000

12701111111

......

100000001

000000000

S&M Intrp.Binary valueThe sign and magnitude approach is to 

represent a number's sign by allocating 

one sign bit to represent the sign: set 

that bit (often the most significant bit) 

to 0 for a positive number, and set to 1 

for a negative number. The remaining 

bits in the number indicate the 

magnitude (or absolute value). 

Note that this number system has two 

representation of 0s.

It is not possible to simply “add” two 

s&m numbers to get their sum
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Bias/Excess-N

+12811111111

......

+110000000

001111111

......

-12600000001

-12700000000

Excess  

-127 intr
Binary valueExcess-N, also called biased 

representation, uses a pre-specified 

number N as a biasing value. A value is 

represented by the unsigned number 

which is N greater than the intended 

value. Thus 0 is represented by N, and −N 

is represented by the all-zeros bit pattern.

The range of signed numbers using 

Excess-127 in a conventional eight-bit 

byte is −12710 to +12810.
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Complements

Given a number a in radix r having n digits, the (r - 1)'s 

complement of a is defined as (rn - 1) – a.

The r's complement of a is defined as rn – a. 

Looking closely at the definition of (r - 1)'s complement 

we see that to obtain the r's complement we need only add 

1 to the (r - 1)'s complement 
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One’s Complement (1C)

−12710000000

......

−011111111

12701111111

......

100000001

000000000

1’C Intr.Binary value

The one’s complement form of a 

negative binary number is the bitwise 

NOT applied to it — the complement of 

its positive counterpart. Ones' 

complement has two representations of 

0: 00000000 (+0) and 11111111 (−0). 

The range of signed numbers with 8-

bits in 1C is from −12710 to +12710, or 

from −2k-1 to (2k-1-1) with k bits

To add two numbers represented in this system, 

one does a conventional binary addition, but it is 

then necessary to add any resulting carry back 

into the resulting sum. To see why this is 

necessary, consider the following example 

showing the case of the addition of −1 

(11111110) to +2 (00000010).
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Two’s Complement (2C)

The two‘s complement form of a negative 

binary number is the bitwise NOT applied to 

it — the complement of its positive 

counterpart, and then adding 1 to it. In 2C 

there is only representation of 0. To make a 

2C negative number positive, one may 

bitwise NOT the bits again and add 1 to it.

Addition of a pair of two's-complement integers is the 

same as addition of a pair of unsigned numbers 

(except for detection of overflow, if that is done).

The range of signed numbers using two‘s 

complement in a conventional eight-bit byte is 

−12810 to +12710, or -2k-1 to (2k-1-1) using k bits. −111111111 

−211111110 

...... 

−12610000010 

−12710000001 

−12810000000 

12701111111 

12601111110 

125 01111101 

... ... 

100000001 

000000000 

2’C 

Interpr

Binary 

Number
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Two’s Complement

One may consider a k-bit 2C representation as having a negative weight 

for the most significant bit i.e. bit k-1. So in a 8-bit 2C system bit-7 has 

weight -128 (-27) instead of 128 (27). All –ve numbers have this bit as 1.

00110000

11011000

10001111

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing -1510+2710

= -128+64+32+16+1 = -1510

= 16+8+2+1 = 2710

= 8 + 4 = 12101

00110001

11011000

10001110

x
1

x
2

x
4

x
8

x
16

x
32

x
64

x
-128 Computing 11310+2710

= 64+32+16+1 = 11310

= 16+8+2+1 = 2710

= -11610!!! (overflow)
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Comparison using a 4-bit system

01110000000000000000(+)0

10000001000100010001+1

10010010001000100010+2

10100011001100110011+3

10110100010001000100+4

11000101010101010101+5

11010110011001100110+6

11100111011101110111+7

1111N/AN/AN/A1000+8

Excs-7

Repres

Two’s C

Repres.

Ones‘C

Repres.

S&M

Repres.

Unsig-

ned

Deci-

mal

N/A1000N/AN/AN/A−8

0000100110001111N/A−7

0001101010011110N/A−6

0010101110101101N/A−5

0011110010111100N/A−4

0100110111001011N/A−3

0101111011011010N/A−2

0110111111101001N/A−1

N/AN/A11111000N/A(−)0

Excs-7

Repres

Two’s C

Repres.

One‘s C

Repres.

S&M

Repres.

Unsig-

ned

Deci-

mal
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Fixed and Floating Point Binary
Binary mixed numbers and fractions can be represented using a 

fixed-point or floating point representation.

A fixed-point binary representation is a real data type for a 

number that has a fixed number of bits before and after the radix 

point. In terms of binary numbers, each magnitude bit represents a power 

of two, while each fractional bit represents an inverse power of two. 

0

24

x16

1

23

X8

1

22

x4

1

21

x2

1010

2-3

x⅛

2-2

x¼

2-1

x½

20

x1

The binary system on the left has 5 bits 
before the radix point and 3 bits after it

= 01110.101
= 8 + 4 + 2 + ½ + ⅛ = 14.625

Floating-point binary refers to the fact that the radix point can be 

placed anywhere relative to the digits within the string. This position 

is indicated separately in the internal representation, and this representation 

can thus be thought of as a computer realization of scientific notation.
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IEEE Standard 754 Floating Point Numbers

102352 [51-00]11 [62-52]1 [63]Double Precision

12723 [22-00]8 [30-23]1 [31]Single Precision

BiasFractionExponentSign

IEEE Standard 754 floating point is the most common representation today for 

real numbers on computers, including Intel-based PC's, Macintoshes, and most 

Unix platforms. 
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Range of IEEE 754 Numbers

± ~10-323.3 to ~10308.3± 2-1022 to (2-2-52)×21023± 2-1074 to (1-2-52)×2-1022
Double

Precision

± ~10-44.85 to ~1038.53± 2-126 to (2-2-23)×2127± 2-149 to (1-2-23)×2-126
Single 

Precision

Approximate 

Decimal

Normalized

Range

Denormalized

Range
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IEEE754 Single Precision

n = (-1)s × 2e × m

Where

s = the sign bit

e = exp − 127 (in other words the exponent is stored with 127 

added to it, also called "biased with 127" or excess-127)

m = 1.fraction in binary (that is, the significand/mantissa is 

the binary number 1 followed by the radix point followed by 

the binary bits of the fraction). Therefore, 1 ≤ m < 2.
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Single Precision Float Examples

= ?

= ?
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IEEE754 Double Precision

n = (-1)s × 2e × m

Where

s = the sign bit

e = exp − 1023 (in other words the exponent is stored with 

1023 added to it, also called excess-1023).

m = 1.fraction in binary (that is, the significand/mantissa is 

the binary number 1 followed by the radix point followed by 

the binary bits of the fraction). Therefore, 1 ≤ m < 2.

© 2007 Syedur Rahman
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IEEE 754 Numbers - Details

non zero2k − 1 (all 1s)NaNs

02k − 1 (all 1s)Infinities

any1 to 2k − 2Normalized numbers

non zero0Denormalized numbers

00Zeroes

FractionExponentType
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k is the number of bits reserved for the exponent, i.e. 8 and 11 bits for single 

and double precision respectively



Denormalized Numbers in IEEE 754 

If the exponent is all 0s, but the fraction is non-zero 
(else it would be interpreted as zero), then the value is a 
denormalized number, which does not have an assumed 
leading 1 before the binary point. 

Thus for single precision, this represents a number 
(-1)s × 0.f × 2-126

where s is the sign bit and f is the fraction. 

For double precision, denormalized numbers represent 
(-1)s × 0.f × 2-1022

From this you can interpret zero as a special type of 
denormalized number. 
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NaNs (Not a Number) in IEEE 754 

The value NaN (Not a Number) is used to represent a value that does 

not represent a real number. NaN's are represented by a bit pattern with 

an exponent of all 1s and a non-zero fraction. There are two categories 

of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN). 

A QNaN is a NaN with the most significant fraction bit set. QNaN's

propagate freely through most arithmetic operations. These values pop 

out of an operation when the result is not mathematically defined. 

An SNaN is a NaN with the most significant fraction bit clear. It is 

used to signal an exception when used in operations. SNaN's can be 

handy to assign to uninitialized variables to trap premature usage. 

Semantically, QNaN's denote indeterminate operations, while SNaN's

denote invalid operations.
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IEEE 754 – Interpretation Summary

n = (-1)s × 2exp-bias × 1.frac if no. is normalized (exp≠0)

n = (-1)s × 2-bias+1 × 0.frac if no. is denormalized (exp=0)

bias=127 for single precision whereas bias=1023 for double precision

Example for Single Precision:

012345678910111213141516171819202122232425262728293031

Sign       Exponent                                            Fraction
s exp frac

Bit
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Special Operations
Operations on special numbers are well-defined by IEEE. In the 

simplest case, any operation with a NaN yields a NaN result. Other 

operations are as follows: 

NaN±Infinity × 0 

NaN±Infinity ÷ ±Infinity 

NaNInfinity - Infinity 

NaN±0 ÷ ±0 

Infinity Infinity + Infinity 

±Infinity ±nonzero ÷ 0 

±Infinity ±Infinity × ±Infinity 

0 n ÷ ±Infinity 

Result Operation 

© 2007 Syedur Rahman
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BCD and ASCII
The Binary Coded Decimal (BCD) 

system allows numbers to be stored in 

decimal form with each decimal digit 

being represented by 4 bits. So, 46 is 

represented by 01000110. It is however 

not of much use in binary arithmetic.

American Standard Code for 

Information Interchange (ASCII) is a 

seven-bit code, meaning it uses patterns of 

seven binary digits (a range of 0 to 127 

decimal) to represent each character 

commonly used for text. The first 32 (0-31) 

are non-printable control characters. E.g. 13 is 

carriage return (enter) and 8 is backspace. ASCII Printable 

Characters 32-126



Gray Code and Error Detecting Code

Gray Code: The reflected binary code, also known as 

Gray code, is a binary numeral system where two 

successive values differ in only one digit. The reflected 

binary code was originally designed to prevent spurious 

output from electromechanical switches. 

Error Detecting Code: To detect errors in data 

communication and processing, an extra bit is sometimes 

added to indicate its parity (e.g. an 8th bit is added to 

ASCII). An even or odd parity bit is an extra bit included 

with a message to make the total number of 1's either 

even or odd respectively

100

101

111

110

01010

01111

00101

00000

3-bit2-bit

With even parity With odd parity

ASCII A = 1000001 01000001 11000001

ASCII T = 1010100 11010100 01010100

Gray Code
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Basics of Digital Logic

A statement is a collection of symbols that has a logic 
value – either off/low (0) or on/high (1). 

Variables in boolean logic are symbols that have a certain 
meaning and take a binary value depending on the current 
situation.

Connectives or operators are symbols that are used to 
form larger statements out of smaller ones.
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Logical Operations

A disjunction is a compound statement in which two 
substatements are connected by + + + + (OR), e.g. p+q

A conjunction is a compound statement in which two 
substatements are connected by .... (AND) e.g. p.q

The negation (NOT) of statement p is p’ or p, meaning 
the complement of p

OR, AND and NOT are basic logical operations. Other 
logical operations include NAND, NOR, XOR etc.
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Truth Tables

A truth table is a mathematical table used in logic to 

compute the functional values of logical expressions on 

any of their functional arguments, that is, with respect to 

the various possible combinations of values that their 

logical variables may take.

Remember that with n logical variables, the truth table 

will always have 2n rows.
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Truth Tables: Examples

111

001

010

000

p....qqp

111

101

110

000

p++++qqp

01

10

pp
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Bit-wise Logical Operations

The bit-wise AND/OR operation between two n-bit numbers X

and Y can be performed by computing the AND/OR of each bit 

of X with the corresponding bit of Y. Similarly the bit-wise 

NOT of a n-bit number X can be performed by NOT-ing each of 

its bits.

Example bit-wise AND, OR and NOT operations with 8 bits:

00010111 01011000

01111010 00010111 NOT 11000010

00010010 01011111 00111101

AND OR
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Logic Gates

A logic gate performs a 

logical operation on one or 

more logic inputs and 

produces a single logic 

output. The logic normally 

performed is Boolean 

logic and is most 

commonly found in digital 

circuits. 

From [2]
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An example of a logical circuit

A = B.C + C

10111

11001

00010

11000

AYXCB

Circuit Diagram
Truth Table
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Transistors

Transistors are versatile three 

lead semiconductor devices 

whose applications include 

electronic switching and 

modulation (amplification). 

They are the building blocks of 

microcomputers.

Basically a transistors works as a 

closed switch when a certain 

voltage is applied to the base 

and as an open switch otherwise.

From [2]
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Shift Operations

Using shift operations the bits in a word/byte are moved, or 

shifted, to the left or right. 

In a logical shift, the bits that are shifted out are discarded, and 

zeros are shifted in (on either end). 

In an arithmetic shift, the bits that are shifted out of either end 

are discarded. In a left arithmetic shift, zeros are shifted in on 

the right; in a right arithmetic shift, the sign bit is shifted in on 

the left, thus preserving the sign of the operand. 

Other shift operations include rotate through carry and rotate 

no carry (with either does or does not respectively take into 

account the special carry bit reserved for arithmetic 

computations)
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Shift and Multiplication/Division

Arithmetic shift operations can be used for 
performing arithmetic operations such as 
multiplication by 2 using left shift and division 
by 2 using right shift.

Multiplications with other numbers can also be 
performed using shifts, addition and/or 
subtraction. Examples:
One can multiply n with 5, by left shifting n
twice (i.e. multiplying by 4) and by adding n to 
the result.
One can multiply n with 7, by left shifting n 
thrice (i.e. multiplying by 8) and subtracting n
from the result.

From [2]
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