Discrete Mathematics *Unit 3: Sets, Relations and Functions*

Syedur Rahman

Lecturer, CSE Department North South University

© 2006 Syedur Rahman

Discrete Mathematics Lecture Notes

Please note that you are not allowed to copy or distribute the content to anyone without prior consent of the author, Mr. Syedur Rahman (syedur.rahman@wolfson.oxon.org)

Acknowledgements

- These lecture notes contain some material from the following sources:
 - [ICM]: Introduction to Computer Mathematics by C. Runciman, 2003
 - [Rosen]: Discrete Mathematics and Its Applications by K.
 Rosen, 5th Edition, Tata McGraw-Hill Edition.

Sets and Specifications

A set is a collection of distinct members (or elements).

A set specification is an expression of the form {member | predicate}. Or elements can simply be listed in any order between {...}. E.g. {p | prime(p) $\land p < 10$ } = {2, 3, 5, 7}.

N is the set of natural (non-negative whole) numbers i.e. $\{0, 1, 2, ...\}$ whereas **Z** is the set of all whole numbers or integers $\{...., -2, -1, 0, 1, 2, ...\}$.

The **empty set** \emptyset contains no elements that is $\emptyset = \{x \mid F\}$, whereas the **universal set U** contains all possible elements (in a domain or agreed world) that is **U** = $\{x \mid T\}$

Set Membership and Subsets

Membership

 $x \in S$ means "x is a member of S"

 $x \notin S$ means "x is not a member of S" i.e. $\neg(x \in S)$

Axioms of membership:

 $\{x \mid x \in S\} = S \text{ and } y \in \{x \mid p(x)\} \equiv p(y)$

Subset \subseteq : $P \subseteq Q$ is true if and only if all members of P are also members of Q. Remember, $\emptyset \subseteq P$ and $P \subseteq U$ for any set P.

Proper Subset \subset : $P \subset Q$ is true if $P \subseteq Q$ and $P \neq Q$

$$\begin{array}{rcl} P \subseteq Q & \equiv & \forall x, x \in P \Rightarrow x \in Q \\ P = Q & \equiv & \forall x, x \in P \Leftrightarrow x \in Q \end{array}$$

Intersection, union, complement and disjoint sets

intersection \cap ; union \cup If P, Q are sets, their

> union $P \cup Q = \{x | x \in P \lor x \in Q\}$ intersection $P \cap Q = \{x | x \in P \land x \in Q\}$

difference \

If P, Q are sets, their

difference $P \setminus Q = \{x | x \in P \land x \notin Q\}$

complement

complement $\overline{P} = \{x | x \notin P\}$

From [ICM]

Please note that difference $P \setminus Q$ is often written as P - Q, and the complement of P is also often written as P'.

Two sets *P* and *Q* are said to be **disjoint** if *P* and *Q* have no elements in common i.e. $P \cap Q = \emptyset$

Venn Diagrams

© 2006 Syedur Rahman

Theorems regarding sets

TABLE 1 Set Identities.				
Identity	Name			
$\begin{array}{l} A \cup \emptyset = A \\ A \cap U = A \end{array}$	Identity laws			
$\begin{array}{l} A \cup U = U \\ A \cap \emptyset = \emptyset \end{array}$	Domination laws			
$\begin{array}{l} A \cup A = A \\ A \cap A = A \end{array}$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws			
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws			
$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$ $\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws			
$A \cup \overline{A} = U$ $A \cup \overline{A} = \emptyset$	Complement laws			

From [Rosen]

Rules regarding set membership

The state of the list of the Distributive Property.								
A	В	С	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$	
1	1	1	1	1	1	1	1	
1	1	0	1	1	1	0	1	
1	0	1	1	1	0	1	1	
1	0	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	
1	1	0	1	0	0	0	0	
1	0	1	1	0	0	0	0	
	0	à	0	0	0	0	0	

Set Cardinality and Rank

If *S* is a set, #*S* (or card(*S*) or |S|) expresses its **cardinality** or the number of elements it has. E.g. $#\emptyset = 0$ whereas $#\{14, 6, 3, 2\} = 4$

Theorem If P and Q are finite sets: (a) $Q \subseteq \overline{P} \Rightarrow \#(P \cup Q) = \#P + \#Q$ (b) $Q \subseteq P \Rightarrow \#(P \setminus Q) = \#P - \#Q$

Definition (\uplus, disjoint union) $P \uplus Q$ is the union of disjoint sets P and Q.

So, $\#(P \uplus Q) = \#P + \#Q$.

Theorem (union decomposition) $P \cup Q = (P \setminus Q) \uplus (P \cap Q) \uplus (Q \setminus P)$

Theorem (cardinality rule) $\#(P \cup Q) + \#(P \cap Q) = \#P + \#Q.$

From [ICM]

Sets can contains other sets as elements e.g. $P = \{\{1,2\}, 3\}$. Anything other than a set (e.g. 3) has rank 0. If *S* is a set whose highest ranked element has rank *k*, then S has **rank** *k*+1. Therefore $\{1,2\}$ has rank 0+1=1 and *P* has rank 1+1=2.

The Powerset

If *S* is a set, its **powerset** 2^{S} is the set which contains all possible subsets of S as its elements. i.e. $2^{S} = \{R \mid R \subseteq S\}$

E.g. $S = \{\text{ham, cheese, tomato}\}, \text{ then } 2^{S} \text{ includes}:$

2^S = { Ø, {ham}, {cheese}, {tomato}, {ham, cheese}, {ham, tomato}, {cheese, tomato}, {ham, cheese, tomato} }

For any set S, its powerset 2^{S} will have $2^{\#S}$ elements. i.e. $\#(2^{S}) = 2^{\#S}$

Partitions

A set $\{P_1, P_2, P_3, ...\}$ of non-empty subsets of a set S is a partition of S exactly if:

(1) $P_1 \cup P_2 \cup P_3 \cup \ldots = S$ (P_i 's cover S), and (2) $j \neq k \Rightarrow P_j \cap P_k = \emptyset$ (P_i 's are disjoint).

The only partition of \emptyset is itself \emptyset . If P is a partition of $S \neq \emptyset$ then $1 \leq \#P \leq \#S$.

the possible partitions of S are

Cartesian Product and Relations

The **cartesian product** $A \times B$ of two sets A and B, is the set of ordered pairs $\{(a, b) \mid a \in A \land b \in B\}$.

E.g. $D = \{Mon, Tues, Wed, Thurs, Fri\}$ and $T = \{am, pm\}$ $D \ge T = \{(Mon, am), (Mon, pm), (Tues, am), (Tues, pm), (Wed, am), (Wed, pm), (Thurs, am), (Thurs, pm), (Fri, am), (Fri, pm) \}$

Therefore one can see that $#(A \times B) = #A \times #B$

Given $A = \{0, 1\}, B = \{t, f\}$ and $C = \{x, y\}$ $A \times B \times C = \{(0, t, x), (0, t, y), (0, f, x), (0, f, y), (1, t, x), (1, t, y), (1, f, x), (1, f, y)\}$ Therefore $\#(A \times B \times C) = \#A \times \#B \times \#C$

If $R \subseteq (A \times B)$, then R is called a **relation** from the set A to the set B.

Sets and Quantifiers

 $\forall x \in S P(x)$ denotes the universal quantification of P(x) where the universe of discourse is the set *S*. i.e.

$$\forall x \in S P(x) \equiv \forall x \ x \in S \Rightarrow P(x)$$

 $\exists x \in S P(x)$ denotes the existential quantification of P(x)where the universe of discourse is the set *S*. $\exists x \in S P(x) \equiv \exists x \ x \in S \land P(x)$

Examples:

 $\forall x \in \mathbb{R} \ (x^2 \ge 0)$ means that the square of all real numbers is greater than or equal to 0. $\exists x \in \mathbb{Z} \ (x^2 = 4)$ means that there is at least one integer whose square is 4

Binary Relations

If $R \subseteq (A \times B)$, then *R* is called a **relation** from the set *A* to the set *B* i.e. $R : A \leftrightarrow B$. A relation may be represented using set specification, a directed graph or an adjacency matrix.

The **directed graph** for *R* contains nodes representing each element of *A* and *B* where an edge from *x* to *y* exists if $x \in A \land y \in B$ $\land (x,y) \in R$ (which can also be written as xRy). The **adjacency matrix** *M* for *R* is a matrix of dimensions #Ax#B, where $M_{x,y} = 1$ if $x \in A \land y \in B \land (x,y) \in R$ (i.e. xRy) and 0 otherwise.

Throughout this course we will be dealing mostly with relations involving two sets, however n-ary relations involving *n* sets often arise. For a relation $R : A_1 \times A_2 \times \ldots \times A_n, A_1, A_2, \ldots, A_n$ are called its domains and *n* is called its degree. Each element of *R* will be a tuple (a_1, a_2, \ldots, a_n) . This is analogous to the way records are stored in database systems.

An example of a relation

E.g. $D = \{Mon, Tues, Wed, Thurs, Fri\}$ and $T = \{am, pm\}$ $D \ge T = \{ (Mon, am), (Mon, pm), (Tues, am), (Tues, pm), (Wed, am), (Wed, pm), (Thurs, am), (Thurs, pm), (Fri, am), (Fri, pm) \}$

Specification of *S* where $S: D \leftrightarrow T$

 $S = \{$ (Mon, am), (Mon, pm), (Tues, pm), (Fri, am) $\}$

One can say, $S(Mon) = \{am, pm\}, S(Fri) = \{am\}, S(Wed) = \{\}.$

Adjacency matrix M_S for S

© 2006 Syedur Rahman

Relational inverse and composition

If $R : A \leftrightarrow B$, then its relation inverse R^{-1} is defined by the rule $xRy \Leftrightarrow yR^{-1}x$. If *M* is the adjacency matrix of *R*, then M^{T} (i.e. the transpose of *M*) is the adjacency matrix for R^{-1} . The digraph for R^{-1} has all the edges from *R* only in the opposite direction. E.g. $S^{-1}(am) = \{Mon, Fri\}, S^{-1}(pm) = \{Mon, Tues\}$

For any $R : A \leftrightarrow B$ and $S : B \leftrightarrow C$, the **relational composition** $R \circ S : A \leftrightarrow C$ is defined by $(a,c) \in R \circ S \Leftrightarrow \exists b \ (a,b) \in R \land (b,c) \in S$. E.g. where $T = S \circ L$, $T(Mon) = \{STR, SPZ\}, T(Thurs) = \{\}, T^{-1}(SPZ) = \{Mon, Tues\}.$

© 2006 Syedur Rahman

Relational inverse and composition

Rules about relational inverse composition:

- Given a relation R, $M_{R^{-1}} = M_R^T$
- Relations R and S can be combined using using basic set operations. For example:

 $(x,y) \in R \cap S \Leftrightarrow (x,y) \in R \land (x,y) \in R$, and $(x,y) \in R \cup S \Leftrightarrow (x,y) \in R \lor (x,y) \in R$

- If *R* and *S* are composable relations then $M_{R \circ S} = M_R M_S$
- The adjacency matrix of RUS can be computed as $M_R + M_S$
- During addition/multiplication of adjacency matrices, boolean rules are applied where sum(*a*,*b*) = max(*a*,*b*) and product(*a*,*b*) = min(*a*,*b*)
- Since, $(M_R M_S)^{\mathsf{T}} = M_S^{\mathsf{T}} M_R^{\mathsf{T}}, (R \circ S)^{-1} = (S^{-1} \circ R^{-1})$
- If R is a relation on the set A, i.e. $R : A \leftrightarrow A$, then

 $R^1 = R$, and $R^{n+1} = R^n \circ R$, i.e. $M_{R^{n+1}} = M_{R^n}$. M_R

Definitions of Relations

Consider a relation $R : A \leftrightarrow A$, with adjacency matrix M_R and digraph G_R

Reflexive/Irreflexive: Relation *R* is **reflexive** if $\forall x \in A$, $(x,x) \in R$, the diagonal of M_R contains all 1s and G_R contains loops around every node (e.g. =, \leq).

Relation *R* is **irreflexive** if $\forall x \in A$, $(x,x) \notin R$, the diagonal of M_R contains all 0s and G_R contains no loops around a node (e.g. <, >). Some relations are neither reflexive nor irreflexive.

Symmetric/Antisymmetric: Relation *R* is **symmetric** if $\forall x, y \in A$, $(x, y) \in R \Rightarrow (y, x) \in R$, the matrix M_R is symmetric along its diagonal and all edges in G_R are two-way (e.g. =, spouse).

Relation *R* is **anti-symmetric** if $\forall x, y \in A$, $(x, y) \in R \land (y, x) \in R \Rightarrow (x=y)$, any offdiagonal 1 in matrix M_R is mirrored by a 1 and no edges in G_R are two-way (e.g. parent, <). Some relations are neither symmetric nor anti-symmetric.

Definitions of Relations

Transitive: Relation *R* is **transitive**, $\forall x, y, z \in A$ $(x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$ and for every two-edge path between two nodes on G_R there is also a direct link between them (e.g. <, >, =). *R* is transitive iff $R^n \subseteq R$ for n = 1, 2, 3, ...

Some other definitions:

The **identity relation** $I_A : A \leftrightarrow A$ is defined by $(x,y) \in I_A \Leftrightarrow (x=y)$. The digraph for I_A contains all loops around each node and its identity matrix contains 1s on its diagonal and 0 everywhere else. For any $R : A \leftrightarrow A$, $R^0 = I_A$

A **partial ordering** is a relation $R : A \leftrightarrow A$, that is reflexive, anti-symmetric and transitive (e.g. \geq , \leq). The pair (A, R) is called a **poset**. A strict partial ordering is irreflexive, anti-symmetric and transitive (e.g. <, >).

Elements x, y of poset (A, R) are said to be **comparable** if $xRy \lor yRx$. A **total/linear ordering** is one in which every pair of elements is comparable.

An **equivalence relation** is one that is reflexive, transitive and symmetric. E.g. =

If *R* on *A* is an equivalence relation, for each $x \in A$ we define the **equivalence** class $[x]_R = \{ y \mid xRy \}$

Closures of Relations

If $X \in \{\text{reflexive, symmetric, transitive}\}$, the X closure of a relation $R : A \leftrightarrow A$, is the smallest relation on A with property X and R as a subset.

The **reflexive closure** of a relation R on A is $R \cup I_A$, or $R \cup R^0$

The symmetric closure of a relation R on A is $R \cup R^{-1}$

The transitive closure of a relation R on A is R^+ . $R^+ = R \cup R^2 \cup \ldots \cup R^n$, (n = #A)

One can also have closures with more than one property, for example: The **reflexive transitive closure** of a relation *R* on *A* is R^* , where $R^* = R^0 \cup R^+$

Things to remember:

 $R^+ \cup R^0$ $= (R \cup R^0)^+$ BUT reflexive closure transitive closure of of transitive closure reflexive closure $R^+ \cup (R^+)^{-1} \neq (R \cup R^{-1})^+$ symmetric closure transitive closure of $(R \cup R^0) \cup (R \cup R^0)^{-1}$ $= (R \cup R^{-1}) \cup (R \cup R^{-1})^{0}$ of transitive closure symmetric closure reflexive closure of symmetric closure of reflexive closure symmetric closure The RHS is the symmetric transitive closure.

From [ICM]

Functions and their types

A relation $f : A \leftrightarrow B$, is a **function** if for every $x \in A$, there is at most one $y \in B$, such that $(x,y) \in f$. A function f is defined as $f : A \rightarrow B$, where A and B are called the **domain** and **codomain** respectively of f.

The **range/image** of *f* is the subset of *B* that is related by *f* to elements of *A*. The subset of *A* that is related by *f* to elements of *B* is called the **domain of definition** of *f*. If *x* is in the domain of definition of *f*, then there exists exactly one $y \in B$ such that f(x)=y. *f* is undefined for elements in *A* that are not in its domain of definition.

If *f* is a function, M_f will have at most one 1 in each row whereas G_f will have at most one edge coming out of each *A* node. A **partial function** (*f* : $A \rightarrow B$) may have some elements of A that are not related to elements in *B*, i.e. the domain and the domain of definition are not the same for *f*.

A function *f* is a **total function** ($f : A \rightarrow B$), if for every $x \in A$ there is exactly one $y \in B$ such that $(x,y) \in f$. M_f will have exactly one 1 in each row whereas G_f will have exactly one edge coming out of each A node. Usually when we speak of functions, we refer to total functions.

Functions and their types

A function *f* is a **surjective**/**onto function** ($f : A \rightarrow B$), if for every $y \in B$ there is at least one $x \in A$, such that $(x, y) \in f$. M_f will have at least one 1 in each column whereas G_f will have at least one edge coming into each *B* node.

A function *f* is a **injective**/**one-to-one function** ($f : A \rightarrow B$), if for every $y \in B$ there is at most one $x \in A$ such that $(x, y) \in f$. M_f will have at most one 1 in each column whereas G_f will have at most one edge coming into each *B* node.

A function $(f : A \rightarrow B)$ that is both surjective and injective is called a **bijection** or a **one-to-one correspondence**.

A **permutation** is a one-to-one correspondence on a finite set.

Examples of digraphs of functions

From [Rosen]