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Sets and Specifications

A set is a collection of distinct members (or elements).

A set specification is an expression of the form {member | predicate}. 
Or elements can simply be listed in any order between {…}. E.g. {p | 
prime(p) ∧ p<10} = {2, 3, 5, 7}.

N is the set of natural (non-negative whole) numbers i.e. {0, 1, 2, ….} 
whereas Z is the set of all whole numbers or integers {…. -2, -1, 0, 1, 2, 
…}.

The empty set Ø contains no elements that is Ø = {x | F}, whereas the 
universal set U contains all possible elements (in a domain or agreed 
world) that is U = {x | T}

© 2006 Syedur Rahman



Set Membership and Subsets

Membership

xeS means “x is a member of S”

x‰S means “x is not a member of S” i.e. ¬(xeS)

Axioms of membership:

{x | xeS} = S and  ye{x | p(x)} ≡ p(y)

Subset zzzz: PzQ is true if and only if all members of P are also 

members of Q. Remember, ØzzzzP and PzzzzU for any set P.

Proper Subset cccc: PcQ is true if PzQ and P≠Q
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Intersection, union, complement and disjoint sets

Please note that difference P \ Q is often written as P –Q, 
and the complement of P is also often written as P’.

Two sets P and Q are said to be disjoint if P and Q
have no elements in common i.e. P ∩Q = Ø
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Venn Diagrams
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Theorems regarding sets

From [Rosen]



Rules regarding set membership
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Set Cardinality and Rank
If S is a set, #S (or card(S) or |S|) expresses its cardinality or the 
number of elements it has. E.g. #Ø = 0 whereas #{14, 6, 3, 2} = 4

Sets can contains other sets as elements e.g. P = {{1,2}, 3}. Anything 
other than a set (e.g. 3) has rank 0. If S is a set whose highest 
ranked element has rank k, then S has rank k+1. Therefore {1,2} has 
rank 0+1=1 and P has rank 1+1=2.
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The Powerset

If S is a set, its powerset 2S is the set which contains all possible 

subsets of S as its elements. i.e. 2S = {R | R z S}

E.g. S = {ham, cheese, tomato}, then 2S includes:

2S = { Ø, {ham}, {cheese}, {tomato}, {ham, cheese}, {ham, tomato},

{cheese, tomato}, {ham, cheese, tomato} }

For any set S, its powerset 2S will have 2#S elements. i.e. #(2S) = 2#S
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Partitions
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Cartesian Product and Relations

The cartesian product A x B of two sets A and B, is the set of 
ordered pairs {(a, b) | aeA ∧∧∧∧ beB).

E.g. D = {Mon, Tues, Wed, Thurs, Fri}  and  T = {am, pm}

D x T = { (Mon, am), (Mon, pm), (Tues, am), (Tues, pm), (Wed, am), 

(Wed, pm), (Thurs, am), (Thurs, pm), (Fri, am), (Fri, pm)  }

Therefore one can see that #(A x B) = #A x #B

Given A = {0, 1}, B = {t, f} and C = {x, y}

A x B x C = {( 0, t, x), (0, t, y), (0, f, x), (0, f, y), (1, t, x), (1, t, y), (1, f, x), (1, f, y) }

Therefore #(A x B x C) = #A x #B x #C

If R z (A x B), then R is called a relation from the set A to the set B.

© 2006 Syedur Rahman



Sets and Quantifiers

∀xeS P(x) denotes the universal quantification of P(x) 

where the universe of discourse is the set S. i.e.

∀xeS P(x) ≡ ∀x xeS ⇒ P(x) 

∃xeS P(x) denotes the existential quantification of P(x) 

where the universe of discourse is the set S.

∃xeS P(x) ≡ ∃x xeS ∧ P(x) 

Examples:

∀xeR (x2 ≥ 0) means that the square of all real numbers is greater than or equal to 0.

∃xeZ (x2 = 4) means that there is at least one integer whose square is 4



Binary Relations

If R z (A x B), then R is called a relation from the set A to the set B 

i.e. R : A ↔ B. A relation may be represented using set 
specification, a directed graph or an adjacency matrix. 

The directed graph for R contains nodes representing each 

element of A and B where an edge from x to y exists if xeA ∧ yeB

∧ (x,y)eR (which can also be written as xRy). The adjacency 

matrix M for R is a matrix of dimensions #Ax#B, where Mx,y = 1 if 
xeA ∧ yeB ∧ (x,y)eR (i.e. xRy) and 0 otherwise.

Throughout this course we will be dealing mostly with relations involving 
two sets, however n-ary relations involving n sets often arise. For a relation 
R : A1 x A2 x …x An, A1, A2 ,…, An are called its domains and n is called its 
degree. Each element of R will be a tuple (a1, a2 ,…, an ). This is analogous 
to the way records are stored in database systems.
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An example of a relation

E.g. D = {Mon, Tues, Wed, Thurs, Fri}  and  T = {am, pm}

D x T = { (Mon, am), (Mon, pm), (Tues, am), (Tues, pm), (Wed, am),

(Wed, pm), (Thurs, am), (Thurs, pm), (Fri, am), (Fri, pm)  }

Specification of S where S : D ↔ T

S = { (Mon, am), (Mon, pm), (Tues, pm), (Fri, am) }

One can say, S(Mon) = {am, pm}, S(Fri) = {am}, S(Wed) = {}.

Diagraph GS of S Adjacency matrix MS for S
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Relational inverse and composition

If R : A ↔ B, then its relation inverse R-1 is defined by the rule xRy ⇔ yR-1x. 
If M is the adjacency matrix of R, then MT (i.e. the transpose of M) is the 
adjacency matrix for R-1. The digraph for R-1 has all the edges from R only in 
the opposite direction. E.g. S-1(am) = {Mon, Fri}, S-1(pm) = {Mon, Tues}

For any R : A ↔ B and S : B ↔ C, the relational composition R○S : A ↔ C
is defined by (a,c)eR○S ⇔ ∃b (a,b)eR ∧ (b,c)eS. E.g. where T = S○L, 

T(Mon)= {STR, SPZ}, T(Thurs) = {}, T-1(SPZ) = {Mon, Tues}.
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Relational inverse and composition

Rules about relational inverse composition:

� Given a relation R, MR-1 = MR
T

� Relations R and S can be combined using using basic set 
operations. For example:

(x,y)eR∩S ⇔ (x,y)eR∧∧∧∧(x,y)eR, and (x,y)eRUS ⇔ (x,y)eR∨∨∨∨(x,y)eR

� If R and S are composable relations then MR○S = MR.MS

� The adjacency matrix of RUS can be computed as MR + MS

� During addition/multiplication of adjacency matrices, boolean rules 
are applied where sum(a,b) = max(a,b) and product(a,b) = min(a,b)

� Since, (MR.MS)T = MS
T.MR

T, (R○S)-1 = (S-1○R-1)

� If R is a relation on the set A, i.e. R : A ↔ A, then 

R1 = R, and Rn+1 = Rn ○ R, i.e. MRn+1 = MRn . MR
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Definitions of Relations

Consider a relation R : A ↔ A, with adjacency matrix MR and digraph GR

Reflexive/Irreflexive: Relation R is reflexive if ∀xeA, (x,x)eR, the diagonal of 

MR contains all 1s and GR contains loops around every node (e.g. =, ≤). 

Relation R is irreflexive if ∀xeA, (x,x)‰R, the diagonal of MR contains all 0s 

and GR contains no loops around a node (e.g. <, >). Some relations are 
neither reflexive nor irreflexive.

Symmetric/Antisymmetric: Relation R is symmetric if ∀x,yeA, (x,y)eR ⇒

(y,x)eR, the matrix MR is symmetric along its diagonal and all edges in GR 

are two-way (e.g. =, spouse). 

Relation R is anti-symmetric if ∀x,yeA, (x,y)eR∧(y,x)eR ⇒ (x=y), any off-

diagonal 1 in matrix MR is mirrored by a 1 and no edges in GR are two-way 
(e.g. parent, <). Some relations are neither symmetric nor anti-symmetric.
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Definitions of Relations
Transitive: Relation R is transitive, ∀x,y,zeA (x,y)eR ∧ (y,z)eR ⇒ (x,z)eR and for 

every two-edge path between two nodes  on GR there is also a direct link between 

them (e.g. <, >, =). R is transitive iff Rn z R for n = 1, 2, 3, …

Some other definitions:

The identity relation IA : A ↔ A is defined by (x,y)eIA ⇔(x=y). The digraph for IA
contains all loops around each node and its identity matrix contains 1s on its 
diagonal and 0 everywhere else. For any R : A ↔ A, R0 = IA

A partial ordering is a relation R : A ↔ A, that is reflexive, anti-symmetric and 
transitive (e.g. ≥, ≤). The pair (A, R) is called a poset. A strict partial ordering is 
irreflexive, anti-symmetric and transitive (e.g. <, >).

Elements x, y of poset (A, R) are said to be comparable if xRy ∨∨∨∨ yRx. A 
total/linear ordering is one in which every pair of elements is comparable.

An equivalence relation is one that is reflexive, transitive and symmetric. E.g. =

If R on A is an equivalence relation, for each xeA we define the equivalence 

class [x]R = { y | xRy }
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Closures of Relations

If X e {reflexive, symmetric, transitive}, the X closure of a relation R : A ↔ A, is the 

smallest relation on A with property X and R as a subset.

The reflexive closure of a relation R on A is R U IA, or R U R0

The symmetric closure of a relation R on A is R U R-1

The transitive closure of a relation R on A is R+. R+ = R U R2 U … U Rn, (n = #A)

One can also have closures with more than one property, for example:

The reflexive transitive closure of a relation R on A is R*, where R* = R0 U R+

Things to remember:
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Functions and their types

A relation f : A ↔ B, is a function if for every xeA, there is at most one yeB, 

such that (x,y)ef. A function f is defined as f : A → B, where A and B are called 

the domain and codomain respectively of f. 

The range/image of f is the subset of B that is related by f to elements of A. 
The subset of A that is related by f to elements of B is called the domain of 
definition of f. If x is in the domain of definition of f, then there exists exactly 
one yeB such that f(x)=y. f is undefined for elements in A that are not in its 

domain of definition.

If f is a function, Mf will have at most one 1 in each row whereas Gf will have at 
most one edge coming out of each A node. A partial function (f : A → B) may 
have some elements of A that are not related to elements in B, i.e. the domain 
and the domain of definition are not the same for f.

A function f is a total function (f : A → B), if for every xeA there is exactly one 
yeB such that (x,y)ef. Mf will have exactly one 1 in each row whereas Gf will 

have exactly one edge coming out of each A node. Usually when we speak of 
functions, we refer to total functions.
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Functions and their types

A function f is a surjective/onto function (f : A → B), if for every yeB

there is at least one xeA, such that (x,y)ef. Mf will have at least one 1 in 

each column whereas Gf will have at least one edge coming into each 
B node.

A function f is a injective/one-to-one function (f : A → B), if for every 

yeB there is at most one xeA such that (x,y)ef. Mf will have at most 

one 1 in each column whereas Gf will have at most one edge coming 
into each B node.

A function (f : A → B) that is both surjective and injective is called a 
bijection or a one-to-one correspondence. 

A permutation is a one-to-one correspondence on a finite set.
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Examples of digraphs of functions
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