
Introduction to Number and Computer Systems  
 

Page 1 of 41 

Introduction 
To 

Number and 
Computer Systems 

 
 
 
 

 
 

Rajesh Palit 
Lecturer 

Department of Computer Science and Engineering 
North South University, Dhaka 1213, Bangladesh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is not an original document. It has been compiled from various books and web sites on the 
internet. The aim of producing these write-ups simply to help the students of ETE 131 course at 

NSU. 



Introduction to Number and Computer Systems  
 

Page 2 of 41 

BINARY SYSTEMS   
 
Digital systems have such a prominent role in everyday life that we refer to the present 
technological period as the digital age. Digital systems are used in communication, business 
transactions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, 
and many other commercial, industrial, and scientific enterprises. We have digital telephones, 
digital television, digital versatile discs, digital cameras, and of course, digital computers. The 
most striking property of the digital computer is its generality. It can follow a sequence of 
instructions, called a program that operates on given data. The user can specify and change the 
program or the data according to the specific need. Because of this flexibility, general-purpose 
digital computers can perform a variety of information processing tasks that range over a wide 
spectrum of applications. 
 
Digital systems manipulate discrete quantities of information that are represented in binary form. 
Operands used for calculations may be expressed in the binary number system. Other discrete 
elements, including the decimal digits, are represented in binary codes. Data processing is carried 
out by means of binary logic elements using binary signals. Quantities are stored in binary 
storage elements. 
  
A decimal number such as 7,392 represents a quantity equal to 7 thousands plus 3 hundreds, plus 
9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied by the position of the 
coefficients. To be more exact, 7,392 should be written as: 

 
7x103 + 3x102 + 9x101 + 2x100 

 
However, the convention is to write only the coefficients and from their position deduce the 
necessary powers of 10. In general, a number with a decimal point is represented by a series of 
coefficients as follows: 
 

d5 d4 d3 d2 d1 d0.d-1 d-2 d-3 
 

The dj coefficients are any of the 10 digits (0, 1, 2... 9), and the subscript value; gives the place 
value and, hence, the power of 10 by which the coefficient must be multiplied. This can be 
expressed as 
 
105dd5 + 104d4 + 103d3 + 102d2 + 101d1 + 100d0 +10-1d-1 + 10-2d-2 + 10-3d-3 

 
The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and the 
coefficients are multiplied by powers of 10. The binary system is a different number system. The 
coefficients of the binary numbers system have only two possible values: 0 or 1. Each coefficient 
d is multiplied by 2n. For example, the decimal equivalent of the binary number 11010.11 is 
26.75, as shown from the multiplication of the coefficients by powers of 2: 

 
1x24 + 1x23 + 0x22 + 1x21 + 0x20 + 1x2-1 + 1x2-2 = 26.75 
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In general, a number expressed in a base-r system has coefficients multiplied by powers of r:  
 

dn.rn + dn-1.rn-1 + . . . + d2.r2 + d1.r1 + d0.r0 + d-1.r-1 + d-2.r-2 + . 

. . + d-m.r-m 

Where, d0 to dn digits are before the radix point and d-1 to d-m digits are after the radix point. To 
distinguish between numbers of different bases, we enclose the coefficients in parentheses and 
write a subscript equal to the base used (except sometimes for decimal numbers, where the 
content makes it obvious that it is decimal). An example of a base-5 number is 
 

(4021.2)5 = 4x53 + 0x52 + 2x5l + lx50 + 2x5-l = (511.4)10 
 
The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a base-
8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is 127.4. To 
determine its equivalent decimal value, we expand the number in a power series with a base of 8: 
 

(127.4)8 = 1x82 + 2x81 + 7x80 + 4x8-1 = (87.5)10 
 
Note that the digits 8 and 9 cannot appear in an octal number. It is customary to borrow the 
needed r digits for the coefficients from the decimal system when the base of the number is less 
than 10. The letters of the alphabet are used to supplement the 10 decimal digits when the base of 
the number is greater than 10. For example, in the hexadecimal (base 16) number system, the 
first ten digits are borrowed from the decimal system. 
 
The letters A, B, C, D, E, and F are used for digits 10, 11, 12, 13, 14, and 15, respectively. An 
example of a hexadecimal number is: 
 

(B65F)16 = 11 x 163 + 6 x 162 + 5 x 161 + 15 x 160 = (46,687)10 
 
As noted before, the digits in a binary number are called bits. When a bit is equal to 0, it does not 
contribute to the sum during the conversion. Therefore, the conversion from binary to decimal 
can be obtained by adding the numbers with powers of two corresponding to the bits that are 
equal to 1. For example, 
 

(110101)2 = 32 + 16 + 4 + 1 = (53)10 
 

There are four 1's in the binary number. The corresponding decimal number is the sum of the  
four powers of two numbers. In computer work, 210 is referred to as K (kilo), 220 as M (mega), 
230 as G (giga), and 240 as T (tera). Thus 4K = 212 = 4096 and 16M = 224 = 16,777,216. Computer 
capacity is usually given in bytes. A byte is equal to eight bits and can accommodate one 
keyboard character. A computer hard disk with 4 gigabytes of storage has a capacity of 4G = 232 

bytes (approximately 10 billion bytes). 
 
Consider base 10 and 2 digit numbers, we have 00 to 99 (100 different numbers). With 3 digits 
we have 000 to 999, i.e., 1000 numbers. We can say, there are rn different combinations of 
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numbers for n digits with radix r, by which we can normally represent 0 – (rn-1). The minimum 
number is 0 and maximum number is (rn -1). If M is a number of n digits with radix r; we can 
write,  
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To represent a number, M in any base, r we can compute the minimum digits required to express 
the number. Say for example, we want to represent (729)10 in base 2 and base 16. We need 10 
and 3 digits respectively. 
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We observe that as the radix increases, the number of required digits decreases.  
 
NUMBER BASE CONVERSIONS 
 
The conversion of a number in base r to decimal is done by expanding the number in a power 
series and adding all the terms as shown previously. We now present a general procedure for the 
reverse operation of converting a decimal number to a number in base r. If the number includes a 
radix point, it is necessary to separate the number into an integer part and a fraction part, since 
each part must be converted differently. The conversion of a decimal integer to a number in base 
r is done by dividing the number and all successive quotients by r and accumulating the 
remainders. This procedure is best illustrated by example. 
 
Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a 
remainder of ½. The quotient is again divided by 2 to give a new quotient and remainder. This  
process is continued until the integer quotient becomes 0. The coefficients of the desired binary 
number are obtained from the remainders as follows: 
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The arithmetic process can be manipulated more conveniently as follows: 
 

 
 
The conversion from decimal integers to any base-r system is similar to the example, except that 
division is done by r instead of 2. 
 
Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an 
integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient of 
2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of 2. 
This process can be conveniently manipulated as follows: 
 

 
 

The conversion of a decimal fraction to binary is accomplished by a method similar to that used 
for integers. However, multiplication is used instead of division, and integers are accumulated 
instead of remainders. Again, the method is best explained by example. 
 
Convert (0.6875)io to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction. 
The new fraction is multiplied by 2 to give a new integer and a new fraction. This process is 
continued until the fraction becomes 0 or until the number of digits has sufficient accuracy. The 
coefficients of the binary number are obtained from the integers as follows: 
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To convert a decimal fraction to a number expressed in base r, a similar procedure is used. 
Multiplication is by r instead of 2, and the coefficients found from the integers may range in 
value from 0 to r - 1 instead of 0 and 1. 
 
Convert (0.513)10 to octal. 
 

0.513 X 8 = 4.104 
0.104 X 8 = 0.832 
0.832 X 8 = 6.656 
0.656 X 8 = 5.248 
0.248 X 8 = 1.984 
0.984 X 8 = 7.872 

 
The answer, to seven significant figures, is obtained from the integer part of the products 

 
(0.513)10 = (0.406517...)8 

 
The conversion of decimal numbers with both integer and fraction parts is done by converting 
the integer and the fraction separately and then combining the two answers. Using the results of 
Examples 1-1 and 1-3, we obtain 
 

(41.6875)10 = (101001.1011)2 
 
From Examples 1-2 and 1-4, we have 
 

(153.513)10 = (231.406517)8 
 

 
OCTAL AND HEXADECIMAL NUMBERS 
 
The conversion from and to binary, octal, and hexadecimal plays an important role in digital 
computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 
hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal, binary, 
octal, and hexadecimal number systems are listed in Table 1-2. 
 
The conversion from binary to octal is easily accomplished by partitioning the binary number 
into groups of three digits each, starting from the binary point and proceeding to the left and to 
the right. The corresponding octal digit is then assigned to each group. The following example 
illustrates the procedure: 
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(10  110  001  101  011  111  100  000 110)2 = (26153.7460)8 

       2     6       1     5      3     7       4      0     6 
Numbers with Different Bases 

Decimal  
(base 10) 

Binary  
(base 2) 

Octal  
(base 8) 

Hexadecimal 
(base 16) 

00 0000 00 0 
01 0001 01 1 
02 0010 02 2 
03 0011 03 3 
04 0100 04 4 
05 0101 05 5 
06 0110 06 6 
07 0111 07 7 
08 1000 10 8 
09 1001 11 9 
10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

 
Conversion from binary to hexadecimal is similar, except that the binary number is divided into 
groups of four digits: 
 

(10 1100 0110 1011. 1111 0010)2 = (2C6B.F2)16 
     2     C     6      B        F       2 
 

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily 
remembered after studying the values listed in Table 1-2. Conversion from octal or hexadecimal 
to binary is done by reversing the preceding procedural. Each octal digit is converted to its three-
digit binary equivalent. Similarly, each hexadecimal digit is converted to its four-digit binary 
equivalent. This is illustrated in the following example: 

 
(673.124)8 = (110   111  011. 001 010 100)2 

                   6        7      3      1     2    4 
And 

 
(306.D)16 = ( 0011 0000  0110.1101)2 

3       0       6       D 
Binary numbers are difficult to work with because they require three or four times as many digits 
as their decimal equivalent. For example, the binary number 111111111111 is equivalent to 
decimal 4095. However, digital computers use binary numbers and it is sometimes necessary for 
the human operator or user to communicate directly with the machine by means I binary 
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numbers. One scheme that retains the binary system in the computer, but reduces the number of 
digits the human must consider, utilizes the relationship between the binary number system and 
the octal or hexadecimal system. By this method, the human thinks in terms of octal or 
hexadecimal numbers and performs the required conversion by inspection when direct 
communication with the machine is necessary. Thus the binary number 111111111111 has 12 
digits and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits). 
 
During communication between people (about binary numbers in the computer), the octal or 
hexadecimal representation is more desirable because it can be expressed more compactly with a 
third or a quarter of the number of digits required for the equivalent binary number. Thus, most 
computer manuals use either octal or hexadecimal numbers to specify binary quantities. The 
choice between them is arbitrary, although hexadecimal tends to win out, since it can represent a 
byte with two digits. 
 
COMPLEMENTS 
 
Complements are used in digital computers for simplifying the subtraction operation and for 
logical manipulation. There are two types of complements for each base-r system: the radix 
complement and the diminished radix complement. The first is referred to as the r's complement 
and the second as the (r - l)'s complement. When the value of the base r is substituted in the 
name, the two types are referred to as the 2's complement and 1's complement for binary 
numbers, and the 10's complement and 9's complement for decimal numbers. 
 
DIMINISHED RADIX COMPLEMENT 
 
Given a number N in base r having n digits, the (r - l)'s complement of N is defined as (rn - l) - N. 
For decimal numbers, r = 10 and r - 1 = 9, so the 9's complement of N is  (l0n - l) - N. In this case, 
10n represents a number that consists of a single 1 followed by n 0s. 10n - 1 is a number 
represented by n 9s. For example, if n = 4, we have l04 = 10,000 and l04 - 1 = 9999. It follows 
that the 9's complement of a decimal number is obtained by subtracting each digit from 9. Some 
numerical examples follow: 
 
The 9's complement of 546700 is 999999 - 546700 = 453299. 
The 9's complement of 012398 is 999999 - 012398 = 987601. 
 
For binary numbers, r = 1 and r - 1 = 1, so the 1's complement of N is (2" - l) - N. Again, 2n is 
represented by a binary number that consists of a 1 followed by n 0s. 2n - 1 is a binary number 
represented by n 1's. For example, if n = 4, we have 24 = (10000); and 24 - 1 = (1111)2. Thus the 
1's complement of a binary number is obtained by subtracting each digit from 1. However, when 
subtracting binary digits from 1, we can have either 1- 0 = 1 or 1-1 = 0, which causes the bit to 
change from 0 to 1 or from 1 to 0. 
 
Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and 0's to 1's. 
The following are some numerical examples: 
 

The 1's complement of 1011000 is 0100111. 
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The 1's complement of 0101101 is 1010010. 
 

The (r - 1)'s complement of octal or hexadecimal numbers is obtained by subtracting each digit 
from 7 or F (decimal 15), respectively. 
 
 
RADIX COMPLEMENT 
 
The r's complement of an n-digit number N in base r is defined as r" — N, for N ? 0 and 0 for N 
= 0. Comparing with the (r - l)'s complement, we note that the r's complement is obtained by 
adding 1 to the (r - l)'s complement since r" - N = [(r" - l) - N] + 1. 
 
Thus, the 10's complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1 to 
the 9's-complement value. The 2's complement of binary 101100 is 010011 + 1 = 010100 and is 
obtained by adding 1 to the 1's-complement value. 
 
Since 10" is a number represented by a 1 followed by n 0's, 10" — N, which is the 10's 
complement of N, can be formed also by leaving all least significant 0's unchanged, subtracting 
the first nonzero least significant digit from 10, and subtracting all higher significant digits from 
9. 
 

The 10's complement of 012398 is 987602. 
The 10's complement of 246700 is 753300. 

 
The 10's complement of the first number is obtained by subtracting 8 from 10 in the least 
significant position and subtracting all other digits from 9. The  10's complement of the second 
number is obtained by leaving the two least significant 0's unchanged, subtracting 7 from 10, and 
subtracting the other three digits from 9. 
 
Similarly, the 2's complement can be formed by leaving all least significant 0's and the first 1 
unchanged, and replacing 1 's with 0's and 0's with 1 's in all other higher significant digits. 
 

The 2's complement of 1101100 is 0010100. 
The 2's complement of 0110111 is 1001001. 

 
The 2's complement of the first number is obtained by leaving the two least significant 0's and 
the first 1 unchanged, and then replacing 1 's with 0's and 0's with 1 's in the other four most-
significant digits. The 2's complement of the second number is obtained by leaving the least 
significant 1 unchanged and complementing all other digits. 
 
In the previous definitions, it was assumed that the numbers did not have a radix point. If the 
original number N contains a radix point, the point should be removed temporarily in order to 
form the r's or (r - l)'s complement. The radix point is then restored to the complemented number 
in the same relative position. It is also worth mentioning that the complement of the complement 
restores the number to its original value. The r's complement of N is rn - N. The complement of 
the complement is rn - (rn- N) = N, and is equal to the original number. 
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SIGNED BINARY NUMBERS 
 
Positive integers (including zero) can be represented as unsigned numbers. However, to represent 
negative integers, we need a notation for negative values. In ordinary arithmetic, a negative 
number is indicated by a minus sign and a positive number by a plus sign. Because of hardware 
limitations, computers must represent everything with binary digits. It is customary to represent 
the sign with a bit placed in the leftmost position of the number. The convention is to make the 
sign bit 0 for positive and 1 for negative. 
 
It is important to realize that both signed and unsigned binary numbers consist of a string of bits 
when represented in a computer. The user determines whether the number is signed or unsigned. 
If the binary number is signed, then the leftmost bit represents the sign and the rest of the bits 
represent the number. If the binary number is assumed to be unsigned, then the left-most bit is 
the most significant bit of the number. For example, the string of bits 01001 can be considered as 
9 (unsigned binary) or a +9 (signed binary) because the leftmost bit is 0. The string of bits 11001 
represent the binary equivalent of 25 when considered as an unsigned number or as -9 when 
considered as a signed number. This is because the 1 that is in the leftmost position designates a 
negative and the other four bits represent binary 9. Usually, there is no confusion in identifying 
the bits if the type of representation for the number is known in advance. 
 
The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+ or -) 
or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in ordinary 
arithmetic. When arithmetic operations are implemented in a computer, it is more convenient to 
use a different system for representing negative numbers, referred to as the signed-complement 
system. In this system, a negative number is indicated by its complement. Whereas the signed-
magnitude system negates a number by changing its sign, the signed-complement system negates 
a number by taking its complement. Since positive numbers always start with 0 (plus) in the left-
most position, the complement will always start with a 1, indicating a negative number. The 
signed-complement system can use either the 1's or the 2's complement, but the 2's complement 
is the most common. 
 
As an example, consider the number 9 represented in binary with eight bits. +9 is represented 
within a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9, which gives 
00001001. Note that all eight bits must have a value and, therefore, 0s are inserted following the 
sign bit up to the first 1. Although there is only one way to represent +9, there are three different 
ways to represent -9 with eight bits: 
 

signed-magnitude representation:             10001001 
signed-1's-complement representation:    11110110 
signed-2's-complement representation:    11110111 

 
In signed-magnitude, -9 is obtained from +9 by changing the sign bit in the leftmost position 
from 0 to 1. In signed-1's complement, -9 is obtained by complementing all the bits of +9, 
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including the sign bit. The signed-2's-complement representation of -9 is obtained by taking the 
2's complement of the positive number, including the sign bit. 
 

Decimal Slgned-2's 
complement 

Signed-1's  
complement 

Signed           
magnitude 

+7 0111 0111 0111 
+6 0110 0110 0110 
+5 0101 0101 0101 
+4 0100 0100 0100 
+3 0011 0011 0011 
+2 0010 0010 0010 
+1 0001 0001 0001 
+0 0000 0000 0000 
-0 — 1111 1000 
-1 1111 1110 1001 
-2 1110 1101 1010 
-3 1101 1100 1011 
-4 1100 1011 1100 
-5 1011 1010 1101 
-6 1010 1001 1110 
-7 1001 1000 1111 
-8 1000 — — 

 
Above table lists all possible 4-bit signed binary numbers in the three representations. The 
equivalent decimal number is also shown for reference. Note that the positive numbers in all 
three representations are identical and have 0 in the leftmost position. The signed-2's 
complement system has only one representation for 0, which is always positive. The other two 
systems have either a positive 0 or a negative 0, which is something not encountered in ordinary 
arithmetic. Note that all negative numbers have a 1 in the leftmost bit position; this is the way we 
distinguish them from the positive numbers. With four bits, we can represent 16 binary numbers.  
 
In the signed-magnitude and the 1's complement representations; there are eight positive 
numbers and eight negative numbers, including two zeros. In the 2's complement representation, 
there are eight positive numbers, including one zero and eight negative numbers. 
 
The signed-magnitude system is used in ordinary arithmetic, but is awkward when employed in 
computer arithmetic because of the separate handling of the sign and the magnitude. Therefore, 
the signed-complement is normally used. The 1's complement imposes some difficulties and is 
seldom used for arithmetic operations. It is useful as a logical operation since the change of 1 to 
0 or 0 to 1 is equivalent to a logical complement operation, as will be shown in the next chapter. 
The following discussion of signed binary arithmetic deals exclusively with the signed-2's-
complement representation of negative numbers. The same procedures can be applied to the 
signed- 1's-complement system by including the end-around carry as done with unsigned 
numbers. 
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ARITHMETIC ADDITION 
 
The addition of two numbers in the signed-magnitude system follows the rules of ordinary 
arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common 
sign. If the signs are different, we subtract the smaller magnitude from the larger and give the 
result the sign of the larger magnitude. For example, (+25) + (-37) = - (37 - 25) = -12 and is done 
by subtracting the smaller magnitude 25 from the larger magnitude 37 and using the sign of 37 
for the sign of the result. This is a process that requires the comparison of the signs and  the 
magnitudes and then performing either addition or subtraction. The same procedure applies to 
binary numbers in signed-magnitude representation. In contrast, the rule for adding numbers in 
the signed-complement system does not require a comparison or subtraction, but only addition. 
The procedure is very simple and can be stated as follows for binary numbers: 
 
The addition of two signed binary numbers with negative numbers represented in signed-2's-
complement form is obtained from the addition of the two numbers, including their sign bits. A 
carry out of the sign-bit position is discarded. 
 
Numerical examples for addition follow: 
 

 + 6   00000110             - 6  11111010 
+13   00001101          +13   00001101 
+19   00010011            + 7  00000111 

 
+ 6  00000110              -6   11111010 
-13  11110011            -13   11110011 
- 7   11111001            -19   11101101 

 
Note that negative numbers must be initially in 2's complement and that if the sum obtained after 
the addition is negative, it is in 2's-complement form. 
 
In each of the four cases, the operation performed is addition with the sign bit included. Any 
carry out of the sign-bit position is discarded, and negative results are automatically in 2's-
complement form. 
 
In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits 
to accommodate the sum. If we start with two n-bit numbers and the sum occupies n + 1 bits, we 
say that an overflow occurs. When one performs the addition with paper and pencil, an overflow 
is not a problem, because we are not limited by the width of the page. We just add another 0 to a 
positive number or another 1 to a negative number in the most-significant  position to extend 
them to n + 1 bits and then perform the addition. Overflow is  a problem in computers because 
the number of bits that hold a number is finite, and a result that exceeds the finite value by 1 
cannot be accommodated. 
 
The complement form of representing negative numbers is unfamiliar to those used to the  
signed-magnitude system. To determine the value of a negative number when in signed-2's 
complement, it is necessary to convert it to a positive number to place it in a more familiar form. 
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For example, the signed binary number 11111001 is negative because the leftmost bit is 1- Its 2's 
complement is 00000111, which is the binary equivalent of +7. We therefore recognize the 
original negative number to be equal to -7. 
 
ARITHMETIC SUBTRACTION 
 
Subtraction of two signed binary numbers when negative numbers are in 2's-complement form is 
very simple and can be stated as follows: 
 
Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend 
(including the sign bit). A carry out of the sign-bit position is discarded. 
 
This procedure occurs because a subtraction operation can be changed to an addition operation if 
the sign of the subtrahend is changed. This is demonstrated by the following relationship: 
 

(±A) - (+B) = (±A) + (-B) 
(±A) - (-B) = (±A) + (+B) 

 
But changing a positive number to a negative number is easily done by taking its 2's 
complement. The reverse is also true because the complement of a negative number in 
complement form produces the equivalent positive number. Consider the subtraction of (-6) - (-
13) = +7. In binary with eight bits, this is written as (11111010 - 11110011). The subtraction is 
changed to addition by taking the 2's complement of the subtrahend (-13) to give (+13). In 
binary, this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain the 
correct answer: 00000111 (+7). 
 
It is worth noting that binary numbers in the signed-complement system are added and subtracted 
by the same basic addition and subtraction rules as unsigned numbers. Therefore, computers 
need only one common hardware circuit to handle both types of arithmetic. The user or 
programmer must interpret the results of such addition or subtraction differently, depending on 
whether it is assumed that the numbers are signed or unsigned. 
 
BINARY LOGIC OPERATIONS 
 

a b a AND b 
( a . b) 

a OR b 
( a + b) 

a XOR b 
( a + b ) 

NOT a 
( a ) 

a NAND b 
( a . b ) 

b NOR b 
( a + b ) 

0 0 0 0 0 1 1 1 
0 1 0 1 1 1 1 0 
1 0 0 1 1 0 1 0 
1 1 1 1 0 0 0 0 

 
If  A  = 1010  

B  = 0110 
 

A . B          =  0010 
A + B         =  1110 
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BINARY CODES  
 
Digital systems use signals that have two distinct values and circuit elements that have two stable 
states. There is a direct analogy among binary signals, binary circuit elements, and binary digits. 
A binary number of n digits, for example, may be represented by n binary circuit elements, each 
having an output signal equivalent to 0 or 1. Digital systems represent and manipulate not only 
binary numbers, but also many other discrete elements of information. Any discrete element of 
information distinct among a group of quantities can be represented with a binary code. The 
codes must be in binary because computers can only hold 1's and 0's. It must be realized that 
binary codes merely change the symbols, not the meaning of the elements of information that 
they represent. If we inspect the bits of a computer at random, we will find that most of the time 
they represent some type of coded information rather than binary numbers. 
 
An n-bit binary code is a group of n bits that assume up to 2n distinct combinations of 1's and 0's, 
with each combination representing one element of the set that is being coded. A set of four 
elements can be coded with two bits, with each element assigned one of the following bit 
combinations: 00, 01, 10, 11. A set of eight elements requires a 3-bit code and a set of 16 
elements requires a 4-bit code. The bit combination of a w-bit code is determined from the count 
in binary from 0 to 2" - 1. Each element must be assigned a unique binary bit combination and 
no two elements can have the same value; otherwise, the code assignment will be ambiguous. 
 
Although the minimum number of bits required to code 2n distinct quantities is n, there is no 
maximum number of bits that may be used for a binary code. For example, the 10 decimal digits 
can be coded with 10 bits, and each decimal digit can be assigned a bit combination of nine 0's 
and a 1. In this particular binary code, the digit 6 is assigned the bit combination 0001000000. 
 
BCD CODES  
 
Although the binary number system is the most natural system for a computer, most people are 
more accustomed to the decimal system. One way to resolve this difference is to convert the 
decimal numbers to binary, perform all arithmetic calculations in binary, and then convert the 
binary results back to decimal. This method requires that we store the decimal numbers in the 
computer so they can be converted to binary. Since the computer can accept only binary values, 
we must represent the decimal digits by means of a code that contains 1's and 0's. It is also 
possible to perform the arithmetic operations directly with decimal numbers when they are stored 
in the computer in coded form. 
 
A binary code will have some unassigned bit combinations if the number of elements in the set is 
not a multiple power of 2. The 10 decimal digits form such a set. A binary code that 
distinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible 
combinations remain unassigned. Different binary codes can be obtained by arranging four bits 
in 10 distinct combinations. The code most commonly used for the decimal digits is the straight 
binary assignment as listed in Table 1-4. This is called binary coded decimal and is commonly 
referred to as BCD. Other decimal codes are possible and a few of them are presented later in 
this section. 
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The following table gives the 4-bit code for one decimal digit. A number with k decimal digits 
will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110, 
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the same 
as its equivalent binary number only when the number is between 0 and 9. 
                       

Decimal 
symbol 

BCD 
Digit 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

 
OTHER DECIMAL CODES  
 
Binary codes for decimal digits require a minimum of four bits per digit. Many different codes 
can be formulated by arranging four bits in 10 distinct possible combinations. The BCD and 
three other representative codes are shown in the table. Each code uses only 10 bit combinations 
out of possible 16 combinations that can be arranged with four bits. The other six unused 
combinations in each case have no meaning and should be avoided; 
 
The BCD and the 2421 codes are examples of weighted codes. In a weighted code, each bit 
position is assigned a weighting factor in such a way that each digit can be evaluated by adding 
the weights of all the 1's in the coded combination. The BCD code has weights of 8, 4, 2, and 1, 
which correspond to the power of two values of each bit. The bit assignment 0110 for example, 
is interpreted by the weights to represent decimal 6 because 8x0 + 4x1 + 2x1 + 1x0 = 6. The bit 
combination 1101 when weighted by the respective digits 2421 gives: 

 
Four Different Binary Codes for the Decimal Digits 
Decimal 

Digit 
BCD 
8421 

 
2421 

 
Excess – 3 

 
8 4 -2 -1 

0 0000 0000 0011 0000 
1 0001 0001 0100 0111 
2 0010 0010 0101 0110 
3 0011 0011 0110 0101 
4 0100 0100 0111 0100 
5 0101 1011 1000 1011 
6 0110 1100 1001 1010 
7 0111 1101 1010 1001 
8 1000 1110 1011 1000 
9 1001 1111 1100 1111 
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GRAY CODE  
 
ASCII CODE 
 
ERROR DETECTING CODE 
 
To detect errors in data communication and processing, an eighth bit is sometimes added to the  
ASCII character to indicate its parity. A parity bit is an extra bit included with a message to 
make the total number of 1's either even or odd. Consider the following two characters and their  
even and odd parity: 
         With even parity     With odd parity 

ASCII A = 1000001     01000001             11000001 
ASCII T = 1010100     11010100      01010100 
 

In each case, we insert an extra bit in the leftmost position of the code to produce an even 
number of 1's in the character for even parity or an odd number of 1's in the character for odd 
parity. In general, one or the other parity is adopted, with even parity being more common. 
 
The parity bit is helpful in detecting errors during the transmission of information from one  
location to another. This is handled by generating an even parity bit in the sending end for each 
character. The 8-bit characters that include parity bits are transmitted to their destination. The  
parity of each character is then checked in the receiving end. If the parity of the received 
character is not even, it means that at least one bit has changed value during the transmission. 
This method detects one, three, or any odd combination of errors in each character that is 
transmitted. An even combination of errors is undetected. Additional error detection codes may 
be needed to take care of an even combination of errors. 
 
What is done after an error is detected depends on the particular application. One possibility is to 
request retransmission of the message on the assumption that the error was random and will not 
occur again. Thus, if the receiver detects a parity error, it sends back the ASCII NAK (negative 
acknowledge) control character consisting of an even parity eight bits 10010101. If no error is 
detected, the receiver sends back an ACK (acknowledge) control character, 00000110. The 
sending end will respond to an NAK by transmitting the message again until the correct parity is 
received. If, after a number of attempts, the transmission is still in error, a message can be sent to 
the operator to check for malfunctions in the transmission path. 
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Floating Point Numbers 
 
IEEE Standard 754 floating point is the most common representation today for real numbers on 
computers, including Intel-based PC's, Macintoshes, and most Unix Platforms. 
 
There are several ways to represent real numbers on computers. Fixed point places a radix point 
somewhere in the middle of the digits, and is equivalent to using integers that represent portions 
of some unit. For example, one might represent 1/100ths of a unit; if you have four decimal 
digits, you could represent 10.82, or 00.01. Another approach is to use rationals, and represent 
every number as the ratio of two integers. Floating-point representation - the most common 
solution - basically represents reals in scientific notation. Scientific notation represents numbers 
as a base number and  an exponent. For example, 123.456 could be represented as 1.23456 x 102. 
In hexadecimal, the number 123.abc might be represented as 1.23abc x 162. Floating-point solves 
a number of representation problems. Fixed-point has a fixed window of representation, which 
limits it from representing very large or very small numbers. Also, fixed-point is prone to a loss 
of precision when two large numbers are divided. 
 
Floating-point, on the other hand, employs a sort of "sliding window" of precision appropriate to 
the scale of the number. This allows it to represent numbers from 1,000,000,000,000 to 
0.0000000000000001 with ease. 
 
Storage Layout 
 
IEEE floating point numbers have three basic components: the sign, the exponent, and the 
mantissa. The mantissa is composed of the fraction and an implicit leading digit. The exponent 
base (2) is implicit and need not be stored. The following figure shows the layout for IEEE 754 
single (32-bit) and double (64-bit) precision floating-point values. The number of bits for each 
field are shown (bit ranges are in square brackets): 
 

 Sign Exponent Mantissa Bias 
Single Precision 1 [31] 8 [30 - 23] 23 [22-0] 127 
Double Precision 1 [63] 11 [62 – 52] 52 [51 – 0] 1023 

 
The Sign Bit 
 
The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number. 
Flipping the value of this bit flips the sign of the number. 
 
The Exponent 
 
The exponent field needs to represent both positive and negative exponents. To do this, a bias is 
added to the actual exponent in order to get the stored exponent. For IEEE single-precision 
floats, this value is 127. Thus, an exponent of zero means that 127 is stored in the exponent field. 
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A stored value of 200 indicates an exponent of (200-127), or 73. For reasons discussed later, 
exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers. 
 
For double precision, the exponent field is 11 bits, and has a bias of 1023. 
 
The Mantissa 
 
The mantissa, also known as the significant, represents the precision bits of the number. It is 
composed of an implicit leading bit and the fraction bits. To find out the value of the implicit 
leading bit, consider that any number can be expressed in scientific notation in many different 
ways. For example, the number five can be represented as any of these: 
 

5.00 x 100 
0.05 x 102 
5000 x 10-3 

 
In order to maximize the quantity of represent-able numbers, floating-point numbers are 
typically stored in normalized form. This basically puts the radix point after the first 
non-zero digit. In normalized form, five is represented as 5.0 x 100. 
 
A nice little optimization is available to us in base two, since the only possible nonzero digit is 1. 
Thus, we can just assume a leading digit of 1, and don't need to represent it explicitly. As a 
result, the mantissa has effectively 24 bits of resolution, by way of 23 fraction bits. 
 
Normalized Form 
 

1. The sign bit is 0 for positive, 1 for negative. 
2. The exponent's base is two. 
3. The exponent field contains 127 plus the true exponent for single -precision, or 1023 plus the true 

exponent for double precision. 
4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of fraction bits. 

 
There are five distinct numerical ranges that single-precision floating-point numbers are not able 
to represent: 
 

1. Negative numbers less than -(2-2-23) x 2127 (negative overflow) 
2. Negative numbers greater than -2-149 (negative underflow) 
3. Zero 
4. Positive numbers less than 2-149 (positive underflow) 
5. Positive numbers greater than (2-2-23) x 2127 (positive overflow) 
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Special Values 
 
IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-
point scheme.  
 
Zero 
 
As mentioned above, zero is not directly represent-able in the straight format, due to the 
assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of zero). 
Zero is a special value denoted with an exponent field of zero and a fraction field of zero. Note 
that -0 and +0 are distinct values, though they both compare as equal. 
 
Infinity 
 
The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all 0s. 
The sign bit distinguishes between negative infinity and positive infinity. Being able to denote 
infinity as a specific value is useful because it allows operations to continue past overflow 
situations. Operations with infinite values are well defined in IEEE floating point. 
 
Not A Number 
 
The value NaN (Not a Number) is used to represent a value that does not represent a real 
number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero 
fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN). 
 
A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely through 
most arithmetic operations. These values pop out of an operation when the result is not 
mathematically defined. 
 
An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception 
when used in operations. SNaN's can be handy to assign to un- initialized variables to trap 
premature usage. Semantically, QNaN's denote indeterminate operations, while SNaN's denote 
invalid operations. 
 

IEEE 754 Floating point number Representations 
Normalized Form 

 
For single precision floating point numbers (32 bits), bias (b) is 127 and double precision floating point 

numbers (64 bits), bias (b) is 1023 
 

Sign Exponent (e) Fraction/Mantissa (f) Value 
Normalized Form 

0 000…000 000….000 + 0 
0 111…111 000…000 + 8  

0 000…001 
… 

xxx…xxx + 1.f x 2(e-b) 
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111…110 
(32 bits) 

Positive minimum number is: when sign = 0, exp = 000…001, and 
mantissa = 000…000, thus it is + 1.000…000 x 2(1-127) = +1x2-126 

 
Positive maximum number is: when sign = 0, exp = 111…110, and 

mantissa = 111…111, thus it is + 1.111…111 x 2(254-127) = 
+(2-2-23)x2+127 

0 or 1 111…111 
000…001 

… 
111…111 

NAN 

1 000…000 000….000 - 0 
1 111…111 000…000 - 8  

1 
000…001 

… 
111…110 

xxx…xxx - 1.f x 2(e-b) 

(32 bits) 
Negative minimum number is: when sign = 1, exp = 000…001, 
and mantissa = 000…000, thus it is + 1.000…000 x 2(1-127) = 

-1x2-126 
Negative maximum number is: when sign = 1, exp = 111…110, 
and mantissa = 111…111, thus it is + 1.111…111 x 2(254-127) = 

-(2-2-23)x2+127 
 
 
De-normalized Form 
 
If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then 
the value is a de-normalized number, which does not have an assumed leading 1 before the 
binary point. Thus, this represents a number (-1)s x 0.f x 2-126, where s is the sign bit and f is the 
fraction. For double precision, de-normalized numbers are of the form (-1)s x 0.f x 2-1022. From 
this we can interpret zero as a special type of de-normalized number. 
 
 

De-normalized Form (Exponent = 0 but Fraction ? 0) 

0 000…000 
000…001 

… 
111…111 

+ 0.f x 2(-b+1) 

1 000…000 
000…001 

… 
111…111 

- 0.f x 2(-b+1) 

Range: ± 0.000…001x2-126 to ± 0.111…111x 2-126 
± 2-149 to ± (1-2-23)x2-126 
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The range of positive floating point numbers can be split into normalized numbers (which 
preserve the full precision of the mantissa), and de-normalized numbers which use only a portion 
of the fraction's precision. Since the sign of floating point numbers is given by a special leading 
bit, the range for negative numbers is given by the negation of the above values. 
 

 Denormalized Normalized 
Approximate 

Decimal 

Single 
Precision ± 2-149 to (1-2-23)×2-126 ± 2-126 to (2-2-23)×2127 ± ~10-44.85 to ~1038.53 

Double 
Precision ± 2-1074 to (1-2-52)×2-1022 ± 2-1022 to (2-2-52)×21023 ± ~10-323.3 to ~10308.3 
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Special Operations 
 

Operation  Result  

n ÷ ±Infinity  0  

±Infinity × ±Infinity  ±Infinity  

±nonzero ÷ 0  ±Infinity  

Infinity + Infinity  Infinity  

±0 ÷ ±0  NaN  

Infinity - Infinity  NaN  

±Infinity ÷ ±Infinity  NaN  

±Infinity × 0  NaN  
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Computer Systems 
 

 
 
 
A computer is an electromechanical device that processes or manipulates data. Computer 
consists of hardware, the physical parts of the computer and software, the programs or sets of 
instructions that tell the computer what to do. During the computing process, computers integrate 
the use of the five key elements: 
 
• Hardware  – computer's hardware consists of electronic devices; the parts you can see and 

touch. 
• Software  - consists of organized sets of instructions for controlling the computer. 
• Data - a representation of facts, concepts. 
• Users/People – people are the operators, also known as users. 
• Procedures – steps to follow for processing data. 
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A computer normally performs only four basic operations that is often referred as the IPOS 
cycle. The four steps of the IPOS cycle are: 
 

1. Input 
2. Processing 
3. Output 
4. Storage 

 
Input Devices 

• Keyboards 
• Mouse 
• Pens 
• Touch Screens 
• Game Controllers 
• Bar Code Readers 
• Scanners 
• Optical Character Reader (OCR) 
• Microphones 
• Digital Cameras 
 

Processing 
 
The processor is like the brain of the computer; it organizes and carries out instructions that 
come from either the user or the software. 
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A processor is usually a single chip or a set of chips contained on a circuit board knows as main 
board or mother board. The term central processing unit (CPU) refers to a computer’s processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intel Pentium 4 processor 
 
 

 
 
The two main parts of a CPU are the control unit and the arithmetic logic unit (ALU). The 
control unit directs the flow of data through the CPU, and to and from other devices. It stores the 
CPU's microcode, which contains the instructions for all the tasks the CPU can perform. The 
actual manipulation of data takes place in the ALU. The ALU can perform arithmetic and logic 
operations. The ALU is connected to a set of registers—small memory areas in the CPU, which 
hold data and program instructions while they are being processed.  
 
Random Access Memory (RAM) 
Read Only Memory (ROM) 
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Output Devices 
 

• Monitors 
o CRT Monitors 
o LCD Monitors 

• Digital Light Projectors 
• Speakers 
• Printers 

o Dot matrix 
o Ink Jet 
o Laser  

• Plotters 
 
Storage Devices 
 
Magnetic drive 
Optical dives (CD ROM, DVD) 
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Internal Structure of Hard disk 
 

Evolution of Computer Systems 
 

1946 AD – J. Presper Eckert, John Mauchley and a team of 50 complete the Electronic 
Numerical Integrator and Computer (Eniac), the first large-scale electronic digital 
computer, at the University of Pennsylvania’s Moore School. Weighing 2 tons, standing 
2 stories and covering 15,000 square feet, Eniac operates at 357 multiplications per 
second. Cost: US$ 500, 000  
 
1950 AD – Von Neumann’s EDVAC is finally complete. Having lost the distinction as 
the first stored-program computer, it is still the first to use binary or digital mathematics. 
 
1954 AD – Fortran, or Formula Translation programming language, is developed by John 
Bakus at IBM. 
 
1960 AD – The first modern computer generation ends as vacuum tubes, punched cards 
and machine codes give way to second generation transistors, magnetic tape and 
procedural languages in computer design and operation. 
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1965 AD – Beginner’s All-purpose Symbolic Instruction Code (BASIC) language is 
created by Tom Kurtz and John Kemeny of Darmouth. 
 
1971 AD – Intel markets the 4004 microprocessor, which paves the way for the micro 
revolution. 
 
1981 AD – The IBM Personal Computer debuts, and Microsoft’s S-DOS becomes its 
standard operating software. 
 
1990 AD – Computers containing a million processors are set to work solving complex 
problems. 
 
2000 AD – Computers containing a billion processors exceed the power of the human 
brain. 

 
Types of Computers 
 
Computers come in a variety of types designed for different purposes, with different capabilities 
and costs. 

Microcomputers  
 
A microcomputer is a computer that has a microprocessor chip as its CPU. They are often 
called personal computers (PC) because they are designed to be used by one person at a time. 
Personal computers are typically used at home, at school, or at a business. Popular uses for 
microcomputers include word processing, surfing the web, sending and receiving e-mail, 
spreadsheet calculations, database management, editing photographs, creating graphics, and 
playing music or games.  

Personal computers come in two major varieties, desktop computers and laptop computers: 
 
Desktop computers  are larger and not meant to be portable. They usually sit in one place on a 
desk or table and are plugged into a wall outlet for power. The case of the computer holds the 
motherboard, drives, power supply, and expansion cards. This case may lay flat on the desk, or it 
may be a tower that stands vertically (on the desk or under it). The computer usually has a 
separate monitor (either a CRT or LCD) although some designs have a display built into the 
case. A separate keyboard and mouse allow the user to input data and commands. 

 
Desktop personal computer 
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Laptop or notebook computers are small and lightweight enough to be carried around with the 
user. They run on battery power, but can also be plugged into a wall outlet. They typically have a 
built- in LCD display that folds down to protect the display when the computer is carried around. 
They also feature a built- in keyboard and some kind of built- in pointing device (such as a touch 
pad).  

While some laptops are less powerful than typical desktop machines, this is not true in all cases. 
Laptops, however, cost more than desktop units of equivalent processing power because the 
smaller components needed to build laptops are more expensive.  

 

Laptop personal computer 

PDAs and Palmtop Computers  
 
A Personal Digital Assistant (PDA) is a handheld microcomputer that trades off power for 
small size and greater portability. They typically use a touch-sensitive LCD screen for both 
output and input (the user draws characters and presses icons on the screen with a stylus). PDAs 
communicate with desktop computers and with each other either by cable connection, infrared 
(IR) beam, or radio waves. PDAs are normally used to keep track of appointment calendars, to-
do lists, address books, and for taking notes. 

 

Personal Digital Assistant 
 

A palmtop or handheld PC is a very small microcomputer that also sacrifices power for small 
size and portability. These devices typically look more like a tiny laptop than a PDA, with a flip-
up screen and small keyboard. They may use Windows CE or similar operating system for 
handheld devices. 

Some PDAs and palmtops contain wireless networking or cell phone devices so that users can 
check e-mail or surf the web on the move. 
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Palmtop computer 
 
Workstations (Entry level Servers/Workgroup Servers) 
 
A workstation is a powerful, high-end microcomputer. They contain one or more 
microprocessor CPUs. They may be used by a single-user for applications requiring more power 
than a typical PC (rendering complex graphics, or performing intensive scientific calculations).  

Alternately, workstation-class microcomputers may be used as server computers that supply 
files to client  computers over a network. This class of powerful microcomputers can also be used 
to handle the processing for many users simultaneously who are connected via terminals; in this 
respect, high-end workstations have essentially supplanted the role of minicomputers (see 
below).  

The term “workstation” also has an alternate meaning: In networking, any client computer 
connected to the network that accesses server resources may be called a workstation. Such a 
network client workstation could be a personal computer or even a “workstation” as defined at 
the top of this section.  
 
Dumb terminals (Sun Thin Clients) are not considered to be network workstations. Client 
workstations on the network are capable of running programs independently of the server, but a 
terminal is not capable of independent processing. 
 

 
Workstation computer 

 
There are classes of computers that are not microcomputers. These include supercomputers, 
mainframes, and minicomputers.  
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Minicomputers (Mid-Range/High-End Servers) 
 
A minicomputer is a multi-user computer that is less powerful than a mainframe. This class of 
computers became available in the 1960’s when large scale integrated circuits made it possible to 
build a computer much cheaper than the then existing. 

 

Sun Fire V490 Server 

Mainframes 
 
A mainframe  computer is a large, powerful computer that handles the processing for many users 
simultaneously (up to several hundred users). The name mainframe originated after 
minicomputers appeared in the 1960’s to distinguish the larger systems from the smaller 
minicomputers.  

Users connect to the mainframe using terminals and submit their tasks for processing by the 
mainframe. A terminal is a device that has a screen and keyboard for input and output, but it 
does not do its own processing (they are also called dumb terminals since they can’t process 
data on their own). The processing power of the mainframe is time-shared between all of the 
users.  

Mainframes typically cost several hundred thousand dollars. They are used in situations where a 
company wants the processing power and information storage in a centralized location. 
Mainframes are also now being used as high-capacity server computers for networks with many 
client workstations. 

 
Mainframe computer (this IBM z-series is about 6 feet tall) 
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Supercomputers  
 
A supercomputer is mainframe computer that has been optimized for speed and processing 
power. The most famous series of supercomputers were designed by the company founded and 
named after Seymour Cray. The Cray-1 was built in the 1976 and installed at Los Alamos 
National Laboratory. Supercomputers are used for extremely calculation-intensive tasks such 
simulating nuclear bomb detonations, aerodynamic flows, around global weather patterns. A 
supercomputer typically costs several million dollars. 

Recently, some supercomputers have been constructed by connecting together large numbers of 
individual processing units (in some cases, these processing units are standard microcomputer 
hardware). 

All of this talk of which computers are more powerful than others (i.e., mainframes are more 
powerful than minicomputers, which are more powerful than microcomputers) is relative for any 
particular moment in time. However, all classes of computers are becoming more powerful with 
time as technology improves. The microprocessor chip in a handheld calculator is more powerful 
than the ENIAC was, and your desktop computer has more processing power than the first 
supercomputers. 
 

 
Earth Simulator, Japan 

 

Rank 
Site 

Country/Year 
Computer / Processors  

Manufacturer 
Rmax 
Rpeak 

1 Earth Simulator Center 
Japan/2002 

Earth-Simulator / 5120 
NEC 

35860 
40960 

2 
Lawrence Livermore 
National Laboratory 
United States/2004 

Thunder 
Intel Itanium2 Tiger4 1.4GHz - 

Quadrics / 4096 
California Digital Corporation 

19940 
22938 

3 
Los Alamos National 

Laboratory 
United States/2002 

ASCI Q - AlphaServer SC45, 1.25 GHz 
/ 8192 

HP 

13880 
20480 
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Computer - Type indicated by manufacturer or vendor 

Processors  - Number of processors 
Rmax - Maximal LINPACK performance achieved 

Rpeak - Theoretical peak performance 
 

FLOPS is acronym for FLoating-point Operations Per Second. For example, 15 Mflops equals 
15 million floating-point arithmetic operations per second. Flops is used as a measure of a 
computing system's speed of performing basic arithmetic operations such as adding, subtracting, 
multiplying, or dividing two numbers. It usua lly refers to addition and subtractions which are the 
fastest operations. Multiplication and especially division may be significantly slower (less 
FLOPS). GFLOPS stands for Giga FLOPS, TFLOPS stands for Tera FLOPS.  
 
The LINPACK Benchmark is based on LINPACK, representing a measure of a system's floating 
point computing power. Introduced by Jack Dongarra, it measures how fast a computer solves 
dense n by n systems of linear equations. The result is millions of floating point operations per 
second (Mflops). 
 
CPUs Used in Personal Computers  
 

• Intel Processors 
• AMD Processors 
• Cyrix Processors 
• Motorola Processors 
• RISC Processors 

 
Intel Processors 
 
Since 1978, Intel's processors have evolved from the 8086 and the 8088 to the 80286, 80386, and 
80486, to the Pentium family of processors.  All are part of the 80x86 line. Intel's Pentium family 
of processors includes the Pentium, Pentium Pro, Pentium with MMX, Pentium II to Pentium IV, 
Celeron, and Xeon processors. The earliest Intel processors included only a few thousand 
transistors. Today's Pentium processors include 9.5 million transistors or more. 
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AMD Processors 
 
Advanced Micro Devices (AMD) was long known as a provider of lower-performance 
processors for use in low-cost computers. With its K6 line of processors, AMD challenged Intel's 
processors in terms of both price and performance. With the K6-III processor, AMD broke the 
600 MHz barrier, claiming the "fastest processor" title for the first time in IBM-compatible 
computers. 
 
 
 
 
 
 
 
 
 
Cyrix Processors 
 
Cyrix began as a specialty chip maker, but eventually began producing microprocessors. Cyrix 
processors are most commonly used in low-price, low-end consumer PCs. Cyrix formerly 
produced the MediaGX processor, and now produces the MII series of processors.  
 

 
 
 

Motorola Processors 
 
Motorola makes the CPUs used in Macintosh and PowerPC computers. Macintosh processors 
use a different basic structural design (architecture) than IBM-compatible PC processors. With 
the release of the G3 and G4 PowerPC processors, Macintosh computers set new standards for 
price and performance. 
 
RISC Processors 
 
Most PCs are based on complex instruction set computing (CISC) chips which contain large 
instruction sets. One CISC instruction consists of several simple instructions. Reduced 
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instruction set computing (RISC) processors use smaller instruction sets. This enables them to 
process more instructions per second than (CISC) chips. RISC processors are found in Apple's 
PowerPC systems, as well as many Handheld PCs (H/PCs), workstations, minicomputers, and 
mainframes. 
 
Parallel Processing 
 
In parallel processing, multiple processors are used in a single system, enabling them to share 
processing tasks. In a massively parallel processor (MPP) system, many processors are used. 
Some MPP systems utilize thousands of processors simultaneously. 
 

 
Memory 
 
Computers use RAM (Random Access Memory) to hold the program code and data during 
computation. A defining characteristic of RAM is that all memory locations can be accessed at 
almost the same speed. Most other techno logies have inherent delays for reading a particular bit 
or byte. Many types of RAM are volatile, which means that unlike some other forms of computer 
storage such as disk storage and tape storage; they lose all data when the computer is powered 
down. Modern RAM generally stores a bit of data as either a charge in a capacitor, as in 
"dynamic RAM,", or the state of a flip-flop, as in "static RAM". 
 
Extended Data Out (EDO) Dynamic Random Access Memory, a type of DRAM that is faster 
than conventional DRAM. Unlike conventional DRAM which can only access one block of data 
at a time, EDO RAM can start fetching the next block of memory at the same time that it sends 
the previous block to the CPU. 
 
Single in- line memory module (SIMM)  
Dual in- line memory module (DIMM)  
 
SDRAM (Synchronous DRAM) 
 
Almost all systems used to ship with 3.3 volt, 168-pin SDRAM DIMMs. SDRAM is not an 
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extension of older EDO DRAM but a new type of DRAM altogether. SDRAM started out 
running at 66 MHz, while older fast page mode DRAM and EDO max out at 50 MHz. SDRAM 
is able to scale to 133 MHz (PC133) officially, and unofficially up to 180MHz or higher. As 
processors get faster, new generations of memory such as DDR and RDRAM are required to get 
proper performance. 
 
DDR (Double Data Rate SDRAM) 
 
DDR basically doubles the rate of data transfer of standard SDRAM by transferring data on the 
up and down tick of a clock cycle. DDR memory operating at 333MHz actually operates at 
166MHz * 2 (aka PC333 / PC2700) or 133MHz*2 (PC266 / PC2100). DDR is a 2.5 volt 
technology that uses 184 pins in its DIMMs. It is incompatible with SDRAM physically, but uses 
a similar parallel bus, making it easier to implement than RDRAM, which is a different 
technology. 

 

 

SIMM 

 

DIMM 
 
Memory Speed 
 
SDRAM initially shipped at a speed of 66MHz. As memory buses got faster, it was pumped up 
to 100MHz, and then 133MHz. The speed grades are referred to as PC66 (unofficially), PC100 
and PC133 SDRAM respectively. Some manufacturers are shipping a PC150 speed grade. The 
speed of DDR RAM is above 400 MHz. 
 
Cache Memory 
 
Cache Memory is fast memory that serves as a buffer between the processor and main memory. 
The cache holds data that was recently used by the processor and saves a trip all the way back to 
slower main memory. The memory structure of PCs is often thought of as just main memory, but  
it's really a five or six level structure: 
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The first two levels of memory are contained in the processor itself, consisting of the processor's 
small internal memory, or registers, and L1 cache, which is the first level of cache, usually 
contained in the processor.  
 
The third level of memory is the L2 cache, usually contained on the motherboard. However, the 
Celeron chip from Intel actually contains 128K of L2 cache within the form factor of the chip. 
More and more chip makers are planning to put this cache on board the processor itself. The 
benefit is that it will then run at the same speed as the processor, and cost less to put on the chip 
than to set up a bus and logic externally from the processor. 
 
The fourth level, is being referred to as L3 cache. This cache used to be the L2 cache on the 
motherboard, but now that some processors include L1 and L2 cache on the chip, it becomes L3 
cache. Usually, it runs slower than the processor, but faster than main memory. 
 
The fifth level (or fourth if you have no "L3 cache") of memory is the main memory itself. 
 
The sixth level is a piece of the hard disk used by the Operating System, usually called virtual 
memory. Most operating systems use this when they run out of main memory, but some use it in 
other ways as well. 
 
This six- tiered structure is designed to efficiently speed data to the processor when it needs it, 
and also to allow the operating system to function when levels of main memory are low. You 
might ask, "Why is all this necessary?" The answer is cost. If there were one type of super- fast, 
super-cheap memory, it could theoretically satisfy the needs of this entire memory architecture. 
This will probably never happen since you don't need very much cache memory to drastically 
improve performance, and there will always be a faster, more expensive alternative to the current 
form of main memory. 
 
Bits, bytes and words 
 
Computer memory consists of a large number of 'two-state devices' (flip-flops). We can think of 
them as switches, which can be 'On' or 'Off'.  If the switch is 'On' it is storing the digit 1. If the 
switch is 'Off' it is storing the number 0. Hence the binary system of numbers is used, which 
consists only of numbers containing 0s and 1s. 
 

    
 

This is how the computer would store the binary number 1011 
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A bit (Binary digIT) is a 0 or a 1. So 1011 is a 4-bit binary number. All data (text, pictures, 
sounds, video clips etc) is stored as binary numbers. The left-end bit of a number represented in 
binary is called the most significant bit, abbreviated msb, and the right-end bit is called the least 
significant bit, abbreviated lsb. 
 

8 bits (b) = 1 byte (B) 
1024 bytes = 1 kilobyte (KB) 
1024 kilobytes = 1 megabyte (MB) 
1024 megabytes = 1 gigabyte (GB) 
1024 gigabytes = 1 terabyte (TB) 

 
A word is the number of bits that the CPU can handle at a time (usually 16, 32, 64 or 128). When 
we say 32 bit processor, the word size is 32 bits. 
 
Software 
 
Computer software is that part of a computer system that consists of encoded information (or 
computer instructions), as opposed to the physical computer equipment (hardware) which is used 
to store and process this information. The term is roughly synonymous with computer program 
but is more generic in scope. 
 
System, programming and application software 
 
Practical computer systems divide software into three major classes: system software, 
programming software and application software, although the distinction is somewhat arbitrary, 
and often blurred. 
 

• System software  helps run the computer hardware and computer system. It includes 
operating systems, device drivers, diagnostic tools, servers, windowing systems, utilities 
and more. The purpose of systems software is to insulate the applications programmer as 
much as possible from the details of the particular computer complex being use, 
especially memory and other hardware features, and such accessory devices as 
communications, printers, readers, displays, keyboards, etc.  

 
• Programming software  usually provides tools to assist a programmer in writing 

computer programs  and software using different programming languages in a more 
convenient way. The tools include text editors, compilers, interpreters, linkers, 
debuggers, and so on. An Integrated development environment (IDE) merges those tools 
into a software bundle, and a programmer may not need to type multiple commands for 
compiling, interpreter, debugging, tracing, and etc., because the IDE usually has an 
advanced graphical user interface, or GUI.  

 
• Application software  allows humans to accomplish one or more specific (non-computer 

related) tasks. Typical applications include industrial automation, business software, 
educational software, medical software, databases and computer games. Businesses are 
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probably the biggest users of application software, but almost every field of human 
activity now uses some form of application software.  

 
Operating Systems 
 
An operating system (OS) is an essential software program that manages the hardware and 
software resources of a computer. The OS performs basic tasks, such as controlling and 
allocating memory, prioritizing the processing of instructions, controlling input and output 
devices, facilitating networking and managing files. 
 

• The User Interface  
• Running Programs  
• Managing Files  
• Managing Hardware  
• Utility Software  

 
Graphical User Interfaces (GUIs) - GUI Tools, Applications and the Interface, Menus, Dialog 
Boxes, Command-Line Interfaces; 
 
General-purpose computers, including personal computers and mainframes, must have an 
operating system to run other programs, such as application software. Examples of operating 
systems for personal computers include Microsoft Windows, Mac OS, Unix, and Linux. 
 
The lowest level of any operating system is its kernel. This is the first layer of software loaded 
into memory when a system boots or starts up. The kernel provides access to various common 
core services to all other system and application programs. These services include, but are not 
limited to: disk access, memory management, task scheduling, and access to other hardware 
devices. 
 
As well as the kernel, an operating system is often distributed with tools for programs to display 
and manage a graphical user interface, as well as utility programs for tasks such as managing 
files and configuring the operating system. They are also often distributed with application 
software that does not relate directly to the operating system's core function, but which the 
operating system distributor finds advantageous to supply with the operating system. 
 
Today’s OS 
 
Command line interface (or CLI) OS's such as DOS, use only the keyboard for input. Modern 
OS's use a mouse for input with a graphical user interface (GUI) sometimes implemented as a 
shell. The appropriate OS may depend on the hardware architecture, specifically the CPU, with 
only Linux and BSD running on almost any CPU. Since the early 1990s the choice for personal 
computers has been largely limited to the Microsoft Windows family and the Unix- like family, 
of which Linux and Mac OS X are becoming the major choices. Mainframe computers and 
embedded systems use a variety of different operating systems, many with no direct connection 
to Windows or Unix, but typically more similar to Unix than Windows. 
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IBM PC compatible - Microsoft Windows and smaller Unix-variants (like Linux and BSD)  
Apple Macintosh - Mac OS X, Windows, Linux and BSD  
Mainframes - A number of unique OS's, sometimes Linux and other UNIX variants 
Embedded systems - a variety of dedicated OS's, and limited versions of Linux or other OS's  
 
[Multi-tasking, multi-programming, multi-processing, parallel processing, multi-

threading, distributed processing] 
 
Computer Programs 
 
The program tells the CPU to process interrupts, or sets of steps the CPU must follow to perform 
a task. Computer hardware understands only machine code. To control hardware, a program 
must be written in binary numbers (1s and 0s).  This code is called machine code or machine 
language. Programmers use programming languages to write code in nearly human language.  
The resulting description is called source code. Compilers and interpreters translate a program 
into object code, the binary version of source code.  
 
The order in which program statements are executed is called program control flow. To 
determine program control flow, programmers may use a flowchart to map the program's 
sequence. Programmers may also create a simple text version of a program's code – called 
pseudo code – to determine how the program will flow. 
 
Programming Languages 
 
The first widely used high- level programming language was FORTRAN, developed during 
1954–57 by an IBM team led by John W. Backus. It is still widely used for numerical work, with 
the latest international standard released in 2004. 
 
Dennis Ritchie developed the C programming language, initially for DEC PDP-11 in 1970. 
During the 1970s, Xerox PARC developed Smalltalk, an object oriented language. Based on the 
development of Smalltalk and other object oriented languages, Bjarne Stroustrup developed a 
programming language based on the syntax of C, called C++ in 1985. 
 
Sun Microsystems released Java in 1995 which became very popular as an introductory 
programming language taught in universities. Microsoft presented the C# programming language 
in 2001 which is very similar to C++ and Java. There are many, many other programming 
languages.  
 
Compilation and interpretation 
 
There are, broadly, two approaches to execute a program written in a given language. These 
approaches are known as compilation, done by a program known as a compiler; and 
interpretation, done by an interpreter. Some programming language implementations support 
both interpretation and compilation. 
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An interpreter parses a computer program and executes it directly. One can imagine this as 
following the instructions of the program line-by- line. In contrast, a compiler translates the 
program into machine code – the native instructions understood by the computer's processor. The 
compiled program can then be run by itself. 
 
Compiled programs usually run faster than interpreted ones, because the overhead of 
understanding and translating the programming language syntax has already been done. 
However, interpreters are frequently easier to write than compilers, and can more easily support 
interactive debugging of a program. 
 
Many modern languages use a mixture of compilation and interpretation. For example, the 
"compiler" for a byte code-based language translates the source code into a partially compiled 
intermediate format, which is later run by a fast interpreter called a virtual machine. Some 
"interpeters" actually use a just- in-time compiler, which compiles the code to machine language 
immediately before running it. These techniques are often combined. 
 


