
Introduction to Number and Computer Systems

Page 1 of 41

Introduction
To

Number and
Computer Systems

Rajesh Palit
Lecturer

Department of Computer Science and Engineering
North South University, Dhaka 1213, Bangladesh

This is not an original document. It has been compiled from various books and web sites on the
internet. The aim of producing these write-ups simply to help the students of ETE 131 course at

NSU.

Introduction to Number and Computer Systems

Page 2 of 41

BINARY SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present
technological period as the digital age. Digital systems are used in communication, business
transactions, traffic control, space guidance, medical treatment, weather monitoring, the Internet,
and many other commercial, industrial, and scientific enterprises. We have digital telephones,
digital television, digital versatile discs, digital cameras, and of course, digital computers. The
most striking property of the digital computer is its generality. It can follow a sequence of
instructions, called a program that operates on given data. The user can specify and change the
program or the data according to the specific need. Because of this flexibility, general-purpose
digital computers can perform a variety of information processing tasks that range over a wide
spectrum of applications.

Digital systems manipulate discrete quantities of information that are represented in binary form.
Operands used for calculations may be expressed in the binary number system. Other discrete
elements, including the decimal digits, are represented in binary codes. Data processing is carried
out by means of binary logic elements using binary signals. Quantities are stored in binary
storage elements.

A decimal number such as 7,392 represents a quantity equal to 7 thousands plus 3 hundreds, plus
9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied by the position of the
coefficients. To be more exact, 7,392 should be written as:

7x103 + 3x102 + 9x101 + 2x100

However, the convention is to write only the coefficients and from their position deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series of
coefficients as follows:

d5 d4 d3 d2 d1 d0.d-1 d-2 d-3

The dj coefficients are any of the 10 digits (0, 1, 2... 9), and the subscript value; gives the place
value and, hence, the power of 10 by which the coefficient must be multiplied. This can be
expressed as

105dd5 + 104d4 + 103d3 + 102d2 + 101d1 + 100d0 +10-1d-1 + 10-2d-2 + 10-3d-3

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and the
coefficients are multiplied by powers of 10. The binary system is a different number system. The
coefficients of the binary numbers system have only two possible values: 0 or 1. Each coefficient
d is multiplied by 2n. For example, the decimal equivalent of the binary number 11010.11 is
26.75, as shown from the multiplication of the coefficients by powers of 2:

1x24 + 1x23 + 0x22 + 1x21 + 0x20 + 1x2-1 + 1x2-2 = 26.75

Introduction to Number and Computer Systems

Page 3 of 41

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

dn.rn + dn-1.rn-1 + . . . + d2.r2 + d1.r1 + d0.r0 + d-1.r-1 + d-2.r-2 + .

. . + d-m.r-m

Where, d0 to dn digits are before the radix point and d-1 to d-m digits are after the radix point. To
distinguish between numbers of different bases, we enclose the coefficients in parentheses and
write a subscript equal to the base used (except sometimes for decimal numbers, where the
content makes it obvious that it is decimal). An example of a base-5 number is

(4021.2)5 = 4x53 + 0x52 + 2x5l + lx50 + 2x5-l = (511.4)10

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system is a base-
8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number is 127.4. To
determine its equivalent decimal value, we expand the number in a power series with a base of 8:

(127.4)8 = 1x82 + 2x81 + 7x80 + 4x8-1 = (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number. It is customary to borrow the
needed r digits for the coefficients from the decimal system when the base of the number is less
than 10. The letters of the alphabet are used to supplement the 10 decimal digits when the base of
the number is greater than 10. For example, in the hexadecimal (base 16) number system, the
first ten digits are borrowed from the decimal system.

The letters A, B, C, D, E, and F are used for digits 10, 11, 12, 13, 14, and 15, respectively. An
example of a hexadecimal number is:

(B65F)16 = 11 x 163 + 6 x 162 + 5 x 161 + 15 x 160 = (46,687)10

As noted before, the digits in a binary number are called bits. When a bit is equal to 0, it does not
contribute to the sum during the conversion. Therefore, the conversion from binary to decimal
can be obtained by adding the numbers with powers of two corresponding to the bits that are
equal to 1. For example,

(110101)2 = 32 + 16 + 4 + 1 = (53)10

There are four 1's in the binary number. The corresponding decimal number is the sum of the
four powers of two numbers. In computer work, 210 is referred to as K (kilo), 220 as M (mega),
230 as G (giga), and 240 as T (tera). Thus 4K = 212 = 4096 and 16M = 224 = 16,777,216. Computer
capacity is usually given in bytes. A byte is equal to eight bits and can accommodate one
keyboard character. A computer hard disk with 4 gigabytes of storage has a capacity of 4G = 232

bytes (approximately 10 billion bytes).

Consider base 10 and 2 digit numbers, we have 00 to 99 (100 different numbers). With 3 digits
we have 000 to 999, i.e., 1000 numbers. We can say, there are rn different combinations of

Introduction to Number and Computer Systems

Page 4 of 41

numbers for n digits with radix r, by which we can normally represent 0 – (rn-1). The minimum
number is 0 and maximum number is (rn -1). If M is a number of n digits with radix r; we can
write,

()

min

1

1

log log(1)
log(1)

log

log(1)
log

n

n

M

M

n r M
M

n
r

M
r

r
r

n

− ≥

≥ +

≥ +
+

≥

 +
=

To represent a number, M in any base, r we can compute the minimum digits required to express
the number. Say for example, we want to represent (729)10 in base 2 and base 16. We need 10
and 3 digits respectively.

2

2

2

2

log(729 1)
log2

log730
log2

9.5117

10

n

n

n
n

 +
=

=

=
=

16

16

16

16

log(729 1)
log16

log730
log16

2.3779

3

n

n

n
n

 +
=

=

=
=

We observe that as the radix increases, the number of required digits decreases.

NUMBER BASE CONVERSIONS

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for the
reverse operation of converting a decimal number to a number in base r. If the number includes a
radix point, it is necessary to separate the number into an integer part and a fraction part, since
each part must be converted differently. The conversion of a decimal integer to a number in base
r is done by dividing the number and all successive quotients by r and accumulating the
remainders. This procedure is best illustrated by example.

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of ½. The quotient is again divided by 2 to give a new quotient and remainder. This
process is continued until the integer quotient becomes 0. The coefficients of the desired binary
number are obtained from the remainders as follows:

Introduction to Number and Computer Systems

Page 5 of 41

The arithmetic process can be manipulated more conveniently as follows:

The conversion from decimal integers to any base-r system is similar to the example, except that
division is done by r instead of 2.

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an
integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer quotient of
2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of 2.
This process can be conveniently manipulated as follows:

The conversion of a decimal fraction to binary is accomplished by a method similar to that used
for integers. However, multiplication is used instead of division, and integers are accumulated
instead of remainders. Again, the method is best explained by example.

Convert (0.6875)io to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction.
The new fraction is multiplied by 2 to give a new integer and a new fraction. This process is
continued until the fraction becomes 0 or until the number of digits has sufficient accuracy. The
coefficients of the binary number are obtained from the integers as follows:

Introduction to Number and Computer Systems

Page 6 of 41

To convert a decimal fraction to a number expressed in base r, a similar procedure is used.
Multiplication is by r instead of 2, and the coefficients found from the integers may range in
value from 0 to r - 1 instead of 0 and 1.

Convert (0.513)10 to octal.

0.513 X 8 = 4.104
0.104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1.984
0.984 X 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products

(0.513)10 = (0.406517...)8

The conversion of decimal numbers with both integer and fraction parts is done by converting
the integer and the fraction separately and then combining the two answers. Using the results of
Examples 1-1 and 1-3, we obtain

(41.6875)10 = (101001.1011)2

From Examples 1-2 and 1-4, we have

(153.513)10 = (231.406517)8

OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digital
computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each
hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal, binary,
octal, and hexadecimal number systems are listed in Table 1-2.

The conversion from binary to octal is easily accomplished by partitioning the binary number
into groups of three digits each, starting from the binary point and proceeding to the left and to
the right. The corresponding octal digit is then assigned to each group. The following example
illustrates the procedure:

Introduction to Number and Computer Systems

Page 7 of 41

(10 110 001 101 011 111 100 000 110)2 = (26153.7460)8

 2 6 1 5 3 7 4 0 6
Numbers with Different Bases

Decimal
(base 10)

Binary
(base 2)

Octal
(base 8)

Hexadecimal
(base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion from binary to hexadecimal is similar, except that the binary number is divided into
groups of four digits:

(10 1100 0110 1011. 1111 0010)2 = (2C6B.F2)16
 2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered after studying the values listed in Table 1-2. Conversion from octal or hexadecimal
to binary is done by reversing the preceding procedural. Each octal digit is converted to its three-
digit binary equivalent. Similarly, each hexadecimal digit is converted to its four-digit binary
equivalent. This is illustrated in the following example:

(673.124)8 = (110 111 011. 001 010 100)2

 6 7 3 1 2 4
And

(306.D)16 = (0011 0000 0110.1101)2

3 0 6 D
Binary numbers are difficult to work with because they require three or four times as many digits
as their decimal equivalent. For example, the binary number 111111111111 is equivalent to
decimal 4095. However, digital computers use binary numbers and it is sometimes necessary for
the human operator or user to communicate directly with the machine by means I binary

Introduction to Number and Computer Systems

Page 8 of 41

numbers. One scheme that retains the binary system in the computer, but reduces the number of
digits the human must consider, utilizes the relationship between the binary number system and
the octal or hexadecimal system. By this method, the human thinks in terms of octal or
hexadecimal numbers and performs the required conversion by inspection when direct
communication with the machine is necessary. Thus the binary number 111111111111 has 12
digits and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits).

During communication between people (about binary numbers in the computer), the octal or
hexadecimal representation is more desirable because it can be expressed more compactly with a
third or a quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities. The
choice between them is arbitrary, although hexadecimal tends to win out, since it can represent a
byte with two digits.

COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulation. There are two types of complements for each base-r system: the radix
complement and the diminished radix complement. The first is referred to as the r's complement
and the second as the (r - l)'s complement. When the value of the base r is substituted in the
name, the two types are referred to as the 2's complement and 1's complement for binary
numbers, and the 10's complement and 9's complement for decimal numbers.

DIMINISHED RADIX COMPLEMENT

Given a number N in base r having n digits, the (r - l)'s complement of N is defined as (rn - l) - N.
For decimal numbers, r = 10 and r - 1 = 9, so the 9's complement of N is (l0n - l) - N. In this case,
10n represents a number that consists of a single 1 followed by n 0s. 10n - 1 is a number
represented by n 9s. For example, if n = 4, we have l04 = 10,000 and l04 - 1 = 9999. It follows
that the 9's complement of a decimal number is obtained by subtracting each digit from 9. Some
numerical examples follow:

The 9's complement of 546700 is 999999 - 546700 = 453299.
The 9's complement of 012398 is 999999 - 012398 = 987601.

For binary numbers, r = 1 and r - 1 = 1, so the 1's complement of N is (2" - l) - N. Again, 2n is
represented by a binary number that consists of a 1 followed by n 0s. 2n - 1 is a binary number
represented by n 1's. For example, if n = 4, we have 24 = (10000); and 24 - 1 = (1111)2. Thus the
1's complement of a binary number is obtained by subtracting each digit from 1. However, when
subtracting binary digits from 1, we can have either 1- 0 = 1 or 1-1 = 0, which causes the bit to
change from 0 to 1 or from 1 to 0.

Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and 0's to 1's.
The following are some numerical examples:

The 1's complement of 1011000 is 0100111.

Introduction to Number and Computer Systems

Page 9 of 41

The 1's complement of 0101101 is 1010010.

The (r - 1)'s complement of octal or hexadecimal numbers is obtained by subtracting each digit
from 7 or F (decimal 15), respectively.

RADIX COMPLEMENT

The r's complement of an n-digit number N in base r is defined as r" — N, for N ? 0 and 0 for N
= 0. Comparing with the (r - l)'s complement, we note that the r's complement is obtained by
adding 1 to the (r - l)'s complement since r" - N = [(r" - l) - N] + 1.

Thus, the 10's complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1 to
the 9's-complement value. The 2's complement of binary 101100 is 010011 + 1 = 010100 and is
obtained by adding 1 to the 1's-complement value.

Since 10" is a number represented by a 1 followed by n 0's, 10" — N, which is the 10's
complement of N, can be formed also by leaving all least significant 0's unchanged, subtracting
the first nonzero least significant digit from 10, and subtracting all higher significant digits from
9.

The 10's complement of 012398 is 987602.
The 10's complement of 246700 is 753300.

The 10's complement of the first number is obtained by subtracting 8 from 10 in the least
significant position and subtracting all other digits from 9. The 10's complement of the second
number is obtained by leaving the two least significant 0's unchanged, subtracting 7 from 10, and
subtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant 0's and the first 1
unchanged, and replacing 1 's with 0's and 0's with 1 's in all other higher significant digits.

The 2's complement of 1101100 is 0010100.
The 2's complement of 0110111 is 1001001.

The 2's complement of the first number is obtained by leaving the two least significant 0's and
the first 1 unchanged, and then replacing 1 's with 0's and 0's with 1 's in the other four most-
significant digits. The 2's complement of the second number is obtained by leaving the least
significant 1 unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point. If the
original number N contains a radix point, the point should be removed temporarily in order to
form the r's or (r - l)'s complement. The radix point is then restored to the complemented number
in the same relative position. It is also worth mentioning that the complement of the complement
restores the number to its original value. The r's complement of N is rn - N. The complement of
the complement is rn - (rn- N) = N, and is equal to the original number.

Introduction to Number and Computer Systems

Page 10 of 41

SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to represent
negative integers, we need a notation for negative values. In ordinary arithmetic, a negative
number is indicated by a minus sign and a positive number by a plus sign. Because of hardware
limitations, computers must represent everything with binary digits. It is customary to represent
the sign with a bit placed in the leftmost position of the number. The convention is to make the
sign bit 0 for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string of bits
when represented in a computer. The user determines whether the number is signed or unsigned.
If the binary number is signed, then the leftmost bit represents the sign and the rest of the bits
represent the number. If the binary number is assumed to be unsigned, then the left-most bit is
the most significant bit of the number. For example, the string of bits 01001 can be considered as
9 (unsigned binary) or a +9 (signed binary) because the leftmost bit is 0. The string of bits 11001
represent the binary equivalent of 25 when considered as an unsigned number or as -9 when
considered as a signed number. This is because the 1 that is in the leftmost position designates a
negative and the other four bits represent binary 9. Usually, there is no confusion in identifying
the bits if the type of representation for the number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed-
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+ or -)
or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in ordinary
arithmetic. When arithmetic operations are implemented in a computer, it is more convenient to
use a different system for representing negative numbers, referred to as the signed-complement
system. In this system, a negative number is indicated by its complement. Whereas the signed-
magnitude system negates a number by changing its sign, the signed-complement system negates
a number by taking its complement. Since positive numbers always start with 0 (plus) in the left-
most position, the complement will always start with a 1, indicating a negative number. The
signed-complement system can use either the 1's or the 2's complement, but the 2's complement
is the most common.

As an example, consider the number 9 represented in binary with eight bits. +9 is represented
within a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9, which gives
00001001. Note that all eight bits must have a value and, therefore, 0s are inserted following the
sign bit up to the first 1. Although there is only one way to represent +9, there are three different
ways to represent -9 with eight bits:

signed-magnitude representation: 10001001
signed-1's-complement representation: 11110110
signed-2's-complement representation: 11110111

In signed-magnitude, -9 is obtained from +9 by changing the sign bit in the leftmost position
from 0 to 1. In signed-1's complement, -9 is obtained by complementing all the bits of +9,

Introduction to Number and Computer Systems

Page 11 of 41

including the sign bit. The signed-2's-complement representation of -9 is obtained by taking the
2's complement of the positive number, including the sign bit.

Decimal Slgned-2's
complement

Signed-1's
complement

Signed
magnitude

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000 — —

Above table lists all possible 4-bit signed binary numbers in the three representations. The
equivalent decimal number is also shown for reference. Note that the positive numbers in all
three representations are identical and have 0 in the leftmost position. The signed-2's
complement system has only one representation for 0, which is always positive. The other two
systems have either a positive 0 or a negative 0, which is something not encountered in ordinary
arithmetic. Note that all negative numbers have a 1 in the leftmost bit position; this is the way we
distinguish them from the positive numbers. With four bits, we can represent 16 binary numbers.

In the signed-magnitude and the 1's complement representations; there are eight positive
numbers and eight negative numbers, including two zeros. In the 2's complement representation,
there are eight positive numbers, including one zero and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when employed in
computer arithmetic because of the separate handling of the sign and the magnitude. Therefore,
the signed-complement is normally used. The 1's complement imposes some difficulties and is
seldom used for arithmetic operations. It is useful as a logical operation since the change of 1 to
0 or 0 to 1 is equivalent to a logical complement operation, as will be shown in the next chapter.
The following discussion of signed binary arithmetic deals exclusively with the signed-2's-
complement representation of negative numbers. The same procedures can be applied to the
signed- 1's-complement system by including the end-around carry as done with unsigned
numbers.

Introduction to Number and Computer Systems

Page 12 of 41

ARITHMETIC ADDITION

The addition of two numbers in the signed-magnitude system follows the rules of ordinary
arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common
sign. If the signs are different, we subtract the smaller magnitude from the larger and give the
result the sign of the larger magnitude. For example, (+25) + (-37) = - (37 - 25) = -12 and is done
by subtracting the smaller magnitude 25 from the larger magnitude 37 and using the sign of 37
for the sign of the result. This is a process that requires the comparison of the signs and the
magnitudes and then performing either addition or subtraction. The same procedure applies to
binary numbers in signed-magnitude representation. In contrast, the rule for adding numbers in
the signed-complement system does not require a comparison or subtraction, but only addition.
The procedure is very simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers represented in signed-2's-
complement form is obtained from the addition of the two numbers, including their sign bits. A
carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

 + 6 00000110 - 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111

+ 6 00000110 -6 11111010
-13 11110011 -13 11110011
- 7 11111001 -19 11101101

Note that negative numbers must be initially in 2's complement and that if the sum obtained after
the addition is negative, it is in 2's-complement form.

In each of the four cases, the operation performed is addition with the sign bit included. Any
carry out of the sign-bit position is discarded, and negative results are automatically in 2's-
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits
to accommodate the sum. If we start with two n-bit numbers and the sum occupies n + 1 bits, we
say that an overflow occurs. When one performs the addition with paper and pencil, an overflow
is not a problem, because we are not limited by the width of the page. We just add another 0 to a
positive number or another 1 to a negative number in the most-significant position to extend
them to n + 1 bits and then perform the addition. Overflow is a problem in computers because
the number of bits that hold a number is finite, and a result that exceeds the finite value by 1
cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number when in signed-2's
complement, it is necessary to convert it to a positive number to place it in a more familiar form.

Introduction to Number and Computer Systems

Page 13 of 41

For example, the signed binary number 11111001 is negative because the leftmost bit is 1- Its 2's
complement is 00000111, which is the binary equivalent of +7. We therefore recognize the
original negative number to be equal to -7.

ARITHMETIC SUBTRACTION

Subtraction of two signed binary numbers when negative numbers are in 2's-complement form is
very simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign-bit position is discarded.

This procedure occurs because a subtraction operation can be changed to an addition operation if
the sign of the subtrahend is changed. This is demonstrated by the following relationship:

(±A) - (+B) = (±A) + (-B)
(±A) - (-B) = (±A) + (+B)

But changing a positive number to a negative number is easily done by taking its 2's
complement. The reverse is also true because the complement of a negative number in
complement form produces the equivalent positive number. Consider the subtraction of (-6) - (-
13) = +7. In binary with eight bits, this is written as (11111010 - 11110011). The subtraction is
changed to addition by taking the 2's complement of the subtrahend (-13) to give (+13). In
binary, this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain the
correct answer: 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added and subtracted
by the same basic addition and subtraction rules as unsigned numbers. Therefore, computers
need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned.

BINARY LOGIC OPERATIONS

a b a AND b
(a . b)

a OR b
(a + b)

a XOR b
(a + b)

NOT a
(a)

a NAND b
(a . b)

b NOR b
(a + b)

0 0 0 0 0 1 1 1
0 1 0 1 1 1 1 0
1 0 0 1 1 0 1 0
1 1 1 1 0 0 0 0

If A = 1010

B = 0110

A . B = 0010
A + B = 1110

Introduction to Number and Computer Systems

Page 14 of 41

BINARY CODES

Digital systems use signals that have two distinct values and circuit elements that have two stable
states. There is a direct analogy among binary signals, binary circuit elements, and binary digits.
A binary number of n digits, for example, may be represented by n binary circuit elements, each
having an output signal equivalent to 0 or 1. Digital systems represent and manipulate not only
binary numbers, but also many other discrete elements of information. Any discrete element of
information distinct among a group of quantities can be represented with a binary code. The
codes must be in binary because computers can only hold 1's and 0's. It must be realized that
binary codes merely change the symbols, not the meaning of the elements of information that
they represent. If we inspect the bits of a computer at random, we will find that most of the time
they represent some type of coded information rather than binary numbers.

An n-bit binary code is a group of n bits that assume up to 2n distinct combinations of 1's and 0's,
with each combination representing one element of the set that is being coded. A set of four
elements can be coded with two bits, with each element assigned one of the following bit
combinations: 00, 01, 10, 11. A set of eight elements requires a 3-bit code and a set of 16
elements requires a 4-bit code. The bit combination of a w-bit code is determined from the count
in binary from 0 to 2" - 1. Each element must be assigned a unique binary bit combination and
no two elements can have the same value; otherwise, the code assignment will be ambiguous.

Although the minimum number of bits required to code 2n distinct quantities is n, there is no
maximum number of bits that may be used for a binary code. For example, the 10 decimal digits
can be coded with 10 bits, and each decimal digit can be assigned a bit combination of nine 0's
and a 1. In this particular binary code, the digit 6 is assigned the bit combination 0001000000.

BCD CODES

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert the
decimal numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store the decimal numbers in the
computer so they can be converted to binary. Since the computer can accept only binary values,
we must represent the decimal digits by means of a code that contains 1's and 0's. It is also
possible to perform the arithmetic operations directly with decimal numbers when they are stored
in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in the set is
not a multiple power of 2. The 10 decimal digits form such a set. A binary code that
distinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible
combinations remain unassigned. Different binary codes can be obtained by arranging four bits
in 10 distinct combinations. The code most commonly used for the decimal digits is the straight
binary assignment as listed in Table 1-4. This is called binary coded decimal and is commonly
referred to as BCD. Other decimal codes are possible and a few of them are presented later in
this section.

Introduction to Number and Computer Systems

Page 15 of 41

The following table gives the 4-bit code for one decimal digit. A number with k decimal digits
will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the same
as its equivalent binary number only when the number is between 0 and 9.

Decimal
symbol

BCD
Digit

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

OTHER DECIMAL CODES

Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
can be formulated by arranging four bits in 10 distinct possible combinations. The BCD and
three other representative codes are shown in the table. Each code uses only 10 bit combinations
out of possible 16 combinations that can be arranged with four bits. The other six unused
combinations in each case have no meaning and should be avoided;

The BCD and the 2421 codes are examples of weighted codes. In a weighted code, each bit
position is assigned a weighting factor in such a way that each digit can be evaluated by adding
the weights of all the 1's in the coded combination. The BCD code has weights of 8, 4, 2, and 1,
which correspond to the power of two values of each bit. The bit assignment 0110 for example,
is interpreted by the weights to represent decimal 6 because 8x0 + 4x1 + 2x1 + 1x0 = 6. The bit
combination 1101 when weighted by the respective digits 2421 gives:

Four Different Binary Codes for the Decimal Digits
Decimal

Digit
BCD
8421

2421

Excess – 3

8 4 -2 -1

0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 0101 0110
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1011
6 0110 1100 1001 1010
7 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111

Introduction to Number and Computer Systems

Page 16 of 41

GRAY CODE

ASCII CODE

ERROR DETECTING CODE

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A parity bit is an extra bit included with a message to
make the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:
 With even parity With odd parity

ASCII A = 1000001 01000001 11000001
ASCII T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an even
number of 1's in the character for even parity or an odd number of 1's in the character for odd
parity. In general, one or the other parity is adopted, with even parity being more common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This is handled by generating an even parity bit in the sending end for each
character. The 8-bit characters that include parity bits are transmitted to their destination. The
parity of each character is then checked in the receiving end. If the parity of the received
character is not even, it means that at least one bit has changed value during the transmission.
This method detects one, three, or any odd combination of errors in each character that is
transmitted. An even combination of errors is undetected. Additional error detection codes may
be needed to take care of an even combination of errors.

What is done after an error is detected depends on the particular application. One possibility is to
request retransmission of the message on the assumption that the error was random and will not
occur again. Thus, if the receiver detects a parity error, it sends back the ASCII NAK (negative
acknowledge) control character consisting of an even parity eight bits 10010101. If no error is
detected, the receiver sends back an ACK (acknowledge) control character, 00000110. The
sending end will respond to an NAK by transmitting the message again until the correct parity is
received. If, after a number of attempts, the transmission is still in error, a message can be sent to
the operator to check for malfunctions in the transmission path.

Introduction to Number and Computer Systems

Page 17 of 41

Floating Point Numbers

IEEE Standard 754 floating point is the most common representation today for real numbers on
computers, including Intel-based PC's, Macintoshes, and most Unix Platforms.

There are several ways to represent real numbers on computers. Fixed point places a radix point
somewhere in the middle of the digits, and is equivalent to using integers that represent portions
of some unit. For example, one might represent 1/100ths of a unit; if you have four decimal
digits, you could represent 10.82, or 00.01. Another approach is to use rationals, and represent
every number as the ratio of two integers. Floating-point representation - the most common
solution - basically represents reals in scientific notation. Scientific notation represents numbers
as a base number and an exponent. For example, 123.456 could be represented as 1.23456 x 102.
In hexadecimal, the number 123.abc might be represented as 1.23abc x 162. Floating-point solves
a number of representation problems. Fixed-point has a fixed window of representation, which
limits it from representing very large or very small numbers. Also, fixed-point is prone to a loss
of precision when two large numbers are divided.

Floating-point, on the other hand, employs a sort of "sliding window" of precision appropriate to
the scale of the number. This allows it to represent numbers from 1,000,000,000,000 to
0.0000000000000001 with ease.

Storage Layout

IEEE floating point numbers have three basic components: the sign, the exponent, and the
mantissa. The mantissa is composed of the fraction and an implicit leading digit. The exponent
base (2) is implicit and need not be stored. The following figure shows the layout for IEEE 754
single (32-bit) and double (64-bit) precision floating-point values. The number of bits for each
field are shown (bit ranges are in square brackets):

 Sign Exponent Mantissa Bias
Single Precision 1 [31] 8 [30 - 23] 23 [22-0] 127
Double Precision 1 [63] 11 [62 – 52] 52 [51 – 0] 1023

The Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number.
Flipping the value of this bit flips the sign of the number.

The Exponent

The exponent field needs to represent both positive and negative exponents. To do this, a bias is
added to the actual exponent in order to get the stored exponent. For IEEE single-precision
floats, this value is 127. Thus, an exponent of zero means that 127 is stored in the exponent field.

Introduction to Number and Computer Systems

Page 18 of 41

A stored value of 200 indicates an exponent of (200-127), or 73. For reasons discussed later,
exponents of -127 (all 0s) and +128 (all 1s) are reserved for special numbers.

For double precision, the exponent field is 11 bits, and has a bias of 1023.

The Mantissa

The mantissa, also known as the significant, represents the precision bits of the number. It is
composed of an implicit leading bit and the fraction bits. To find out the value of the implicit
leading bit, consider that any number can be expressed in scientific notation in many different
ways. For example, the number five can be represented as any of these:

5.00 x 100
0.05 x 102
5000 x 10-3

In order to maximize the quantity of represent-able numbers, floating-point numbers are
typically stored in normalized form. This basically puts the radix point after the first
non-zero digit. In normalized form, five is represented as 5.0 x 100.

A nice little optimization is available to us in base two, since the only possible nonzero digit is 1.
Thus, we can just assume a leading digit of 1, and don't need to represent it explicitly. As a
result, the mantissa has effectively 24 bits of resolution, by way of 23 fraction bits.

Normalized Form

1. The sign bit is 0 for positive, 1 for negative.
2. The exponent's base is two.
3. The exponent field contains 127 plus the true exponent for single -precision, or 1023 plus the true

exponent for double precision.
4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of fraction bits.

There are five distinct numerical ranges that single-precision floating-point numbers are not able
to represent:

1. Negative numbers less than -(2-2-23) x 2127 (negative overflow)
2. Negative numbers greater than -2-149 (negative underflow)
3. Zero
4. Positive numbers less than 2-149 (positive underflow)
5. Positive numbers greater than (2-2-23) x 2127 (positive overflow)

Introduction to Number and Computer Systems

Page 19 of 41

Special Values

IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-
point scheme.

Zero

As mentioned above, zero is not directly represent-able in the straight format, due to the
assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of zero).
Zero is a special value denoted with an exponent field of zero and a fraction field of zero. Note
that -0 and +0 are distinct values, though they both compare as equal.

Infinity

The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all 0s.
The sign bit distinguishes between negative infinity and positive infinity. Being able to denote
infinity as a specific value is useful because it allows operations to continue past overflow
situations. Operations with infinite values are well defined in IEEE floating point.

Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a real
number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero
fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely through
most arithmetic operations. These values pop out of an operation when the result is not
mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception
when used in operations. SNaN's can be handy to assign to un- initialized variables to trap
premature usage. Semantically, QNaN's denote indeterminate operations, while SNaN's denote
invalid operations.

IEEE 754 Floating point number Representations
Normalized Form

For single precision floating point numbers (32 bits), bias (b) is 127 and double precision floating point

numbers (64 bits), bias (b) is 1023

Sign Exponent (e) Fraction/Mantissa (f) Value
Normalized Form

0 000…000 000….000 + 0
0 111…111 000…000 + 8

0 000…001
…

xxx…xxx + 1.f x 2(e-b)

Introduction to Number and Computer Systems

Page 20 of 41

111…110
(32 bits)

Positive minimum number is: when sign = 0, exp = 000…001, and
mantissa = 000…000, thus it is + 1.000…000 x 2(1-127) = +1x2-126

Positive maximum number is: when sign = 0, exp = 111…110, and

mantissa = 111…111, thus it is + 1.111…111 x 2(254-127) =
+(2-2-23)x2+127

0 or 1 111…111
000…001

…
111…111

NAN

1 000…000 000….000 - 0
1 111…111 000…000 - 8

1
000…001

…
111…110

xxx…xxx - 1.f x 2(e-b)

(32 bits)
Negative minimum number is: when sign = 1, exp = 000…001,
and mantissa = 000…000, thus it is + 1.000…000 x 2(1-127) =

-1x2-126
Negative maximum number is: when sign = 1, exp = 111…110,
and mantissa = 111…111, thus it is + 1.111…111 x 2(254-127) =

-(2-2-23)x2+127

De-normalized Form

If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then
the value is a de-normalized number, which does not have an assumed leading 1 before the
binary point. Thus, this represents a number (-1)s x 0.f x 2-126, where s is the sign bit and f is the
fraction. For double precision, de-normalized numbers are of the form (-1)s x 0.f x 2-1022. From
this we can interpret zero as a special type of de-normalized number.

De-normalized Form (Exponent = 0 but Fraction ? 0)

0 000…000
000…001

…
111…111

+ 0.f x 2(-b+1)

1 000…000
000…001

…
111…111

- 0.f x 2(-b+1)

Range: ± 0.000…001x2-126 to ± 0.111…111x 2-126
± 2-149 to ± (1-2-23)x2-126

Introduction to Number and Computer Systems

Page 21 of 41

The range of positive floating point numbers can be split into normalized numbers (which
preserve the full precision of the mantissa), and de-normalized numbers which use only a portion
of the fraction's precision. Since the sign of floating point numbers is given by a special leading
bit, the range for negative numbers is given by the negation of the above values.

 Denormalized Normalized
Approximate

Decimal

Single
Precision ± 2-149 to (1-2-23)×2-126 ± 2-126 to (2-2-23)×2127 ± ~10-44.85 to ~1038.53

Double
Precision ± 2-1074 to (1-2-52)×2-1022 ± 2-1022 to (2-2-52)×21023 ± ~10-323.3 to ~10308.3

Introduction to Number and Computer Systems

Page 22 of 41

Special Operations

Operation Result

n ÷ ±Infinity 0

±Infinity × ±Infinity ±Infinity

±nonzero ÷ 0 ±Infinity

Infinity + Infinity Infinity

±0 ÷ ±0 NaN

Infinity - Infinity NaN

±Infinity ÷ ±Infinity NaN

±Infinity × 0 NaN

Introduction to Number and Computer Systems

Page 23 of 41

Computer Systems

A computer is an electromechanical device that processes or manipulates data. Computer
consists of hardware, the physical parts of the computer and software, the programs or sets of
instructions that tell the computer what to do. During the computing process, computers integrate
the use of the five key elements:

• Hardware – computer's hardware consists of electronic devices; the parts you can see and

touch.
• Software - consists of organized sets of instructions for controlling the computer.
• Data - a representation of facts, concepts.
• Users/People – people are the operators, also known as users.
• Procedures – steps to follow for processing data.

Introduction to Number and Computer Systems

Page 24 of 41

A computer normally performs only four basic operations that is often referred as the IPOS
cycle. The four steps of the IPOS cycle are:

1. Input
2. Processing
3. Output
4. Storage

Input Devices

• Keyboards
• Mouse
• Pens
• Touch Screens
• Game Controllers
• Bar Code Readers
• Scanners
• Optical Character Reader (OCR)
• Microphones
• Digital Cameras

Processing

The processor is like the brain of the computer; it organizes and carries out instructions that
come from either the user or the software.

Introduction to Number and Computer Systems

Page 25 of 41

A processor is usually a single chip or a set of chips contained on a circuit board knows as main
board or mother board. The term central processing unit (CPU) refers to a computer’s processor.

Intel Pentium 4 processor

The two main parts of a CPU are the control unit and the arithmetic logic unit (ALU). The
control unit directs the flow of data through the CPU, and to and from other devices. It stores the
CPU's microcode, which contains the instructions for all the tasks the CPU can perform. The
actual manipulation of data takes place in the ALU. The ALU can perform arithmetic and logic
operations. The ALU is connected to a set of registers—small memory areas in the CPU, which
hold data and program instructions while they are being processed.

Random Access Memory (RAM)
Read Only Memory (ROM)

Introduction to Number and Computer Systems

Page 26 of 41

Output Devices

• Monitors
o CRT Monitors
o LCD Monitors

• Digital Light Projectors
• Speakers
• Printers

o Dot matrix
o Ink Jet
o Laser

• Plotters

Storage Devices

Magnetic drive
Optical dives (CD ROM, DVD)

Introduction to Number and Computer Systems

Page 27 of 41

Internal Structure of Hard disk

Evolution of Computer Systems

1946 AD – J. Presper Eckert, John Mauchley and a team of 50 complete the Electronic
Numerical Integrator and Computer (Eniac), the first large-scale electronic digital
computer, at the University of Pennsylvania’s Moore School. Weighing 2 tons, standing
2 stories and covering 15,000 square feet, Eniac operates at 357 multiplications per
second. Cost: US$ 500, 000

1950 AD – Von Neumann’s EDVAC is finally complete. Having lost the distinction as
the first stored-program computer, it is still the first to use binary or digital mathematics.

1954 AD – Fortran, or Formula Translation programming language, is developed by John
Bakus at IBM.

1960 AD – The first modern computer generation ends as vacuum tubes, punched cards
and machine codes give way to second generation transistors, magnetic tape and
procedural languages in computer design and operation.

Introduction to Number and Computer Systems

Page 28 of 41

1965 AD – Beginner’s All-purpose Symbolic Instruction Code (BASIC) language is
created by Tom Kurtz and John Kemeny of Darmouth.

1971 AD – Intel markets the 4004 microprocessor, which paves the way for the micro
revolution.

1981 AD – The IBM Personal Computer debuts, and Microsoft’s S-DOS becomes its
standard operating software.

1990 AD – Computers containing a million processors are set to work solving complex
problems.

2000 AD – Computers containing a billion processors exceed the power of the human
brain.

Types of Computers

Computers come in a variety of types designed for different purposes, with different capabilities
and costs.

Microcomputers

A microcomputer is a computer that has a microprocessor chip as its CPU. They are often
called personal computers (PC) because they are designed to be used by one person at a time.
Personal computers are typically used at home, at school, or at a business. Popular uses for
microcomputers include word processing, surfing the web, sending and receiving e-mail,
spreadsheet calculations, database management, editing photographs, creating graphics, and
playing music or games.

Personal computers come in two major varieties, desktop computers and laptop computers:

Desktop computers are larger and not meant to be portable. They usually sit in one place on a
desk or table and are plugged into a wall outlet for power. The case of the computer holds the
motherboard, drives, power supply, and expansion cards. This case may lay flat on the desk, or it
may be a tower that stands vertically (on the desk or under it). The computer usually has a
separate monitor (either a CRT or LCD) although some designs have a display built into the
case. A separate keyboard and mouse allow the user to input data and commands.

Desktop personal computer

Introduction to Number and Computer Systems

Page 29 of 41

Laptop or notebook computers are small and lightweight enough to be carried around with the
user. They run on battery power, but can also be plugged into a wall outlet. They typically have a
built- in LCD display that folds down to protect the display when the computer is carried around.
They also feature a built- in keyboard and some kind of built- in pointing device (such as a touch
pad).

While some laptops are less powerful than typical desktop machines, this is not true in all cases.
Laptops, however, cost more than desktop units of equivalent processing power because the
smaller components needed to build laptops are more expensive.

Laptop personal computer

PDAs and Palmtop Computers

A Personal Digital Assistant (PDA) is a handheld microcomputer that trades off power for
small size and greater portability. They typically use a touch-sensitive LCD screen for both
output and input (the user draws characters and presses icons on the screen with a stylus). PDAs
communicate with desktop computers and with each other either by cable connection, infrared
(IR) beam, or radio waves. PDAs are normally used to keep track of appointment calendars, to-
do lists, address books, and for taking notes.

Personal Digital Assistant

A palmtop or handheld PC is a very small microcomputer that also sacrifices power for small
size and portability. These devices typically look more like a tiny laptop than a PDA, with a flip-
up screen and small keyboard. They may use Windows CE or similar operating system for
handheld devices.

Some PDAs and palmtops contain wireless networking or cell phone devices so that users can
check e-mail or surf the web on the move.

Introduction to Number and Computer Systems

Page 30 of 41

Palmtop computer

Workstations (Entry level Servers/Workgroup Servers)

A workstation is a powerful, high-end microcomputer. They contain one or more
microprocessor CPUs. They may be used by a single-user for applications requiring more power
than a typical PC (rendering complex graphics, or performing intensive scientific calculations).

Alternately, workstation-class microcomputers may be used as server computers that supply
files to client computers over a network. This class of powerful microcomputers can also be used
to handle the processing for many users simultaneously who are connected via terminals; in this
respect, high-end workstations have essentially supplanted the role of minicomputers (see
below).

The term “workstation” also has an alternate meaning: In networking, any client computer
connected to the network that accesses server resources may be called a workstation. Such a
network client workstation could be a personal computer or even a “workstation” as defined at
the top of this section.

Dumb terminals (Sun Thin Clients) are not considered to be network workstations. Client
workstations on the network are capable of running programs independently of the server, but a
terminal is not capable of independent processing.

Workstation computer

There are classes of computers that are not microcomputers. These include supercomputers,
mainframes, and minicomputers.

Introduction to Number and Computer Systems

Page 31 of 41

Minicomputers (Mid-Range/High-End Servers)

A minicomputer is a multi-user computer that is less powerful than a mainframe. This class of
computers became available in the 1960’s when large scale integrated circuits made it possible to
build a computer much cheaper than the then existing.

Sun Fire V490 Server

Mainframes

A mainframe computer is a large, powerful computer that handles the processing for many users
simultaneously (up to several hundred users). The name mainframe originated after
minicomputers appeared in the 1960’s to distinguish the larger systems from the smaller
minicomputers.

Users connect to the mainframe using terminals and submit their tasks for processing by the
mainframe. A terminal is a device that has a screen and keyboard for input and output, but it
does not do its own processing (they are also called dumb terminals since they can’t process
data on their own). The processing power of the mainframe is time-shared between all of the
users.

Mainframes typically cost several hundred thousand dollars. They are used in situations where a
company wants the processing power and information storage in a centralized location.
Mainframes are also now being used as high-capacity server computers for networks with many
client workstations.

Mainframe computer (this IBM z-series is about 6 feet tall)

Introduction to Number and Computer Systems

Page 32 of 41

Supercomputers

A supercomputer is mainframe computer that has been optimized for speed and processing
power. The most famous series of supercomputers were designed by the company founded and
named after Seymour Cray. The Cray-1 was built in the 1976 and installed at Los Alamos
National Laboratory. Supercomputers are used for extremely calculation-intensive tasks such
simulating nuclear bomb detonations, aerodynamic flows, around global weather patterns. A
supercomputer typically costs several million dollars.

Recently, some supercomputers have been constructed by connecting together large numbers of
individual processing units (in some cases, these processing units are standard microcomputer
hardware).

All of this talk of which computers are more powerful than others (i.e., mainframes are more
powerful than minicomputers, which are more powerful than microcomputers) is relative for any
particular moment in time. However, all classes of computers are becoming more powerful with
time as technology improves. The microprocessor chip in a handheld calculator is more powerful
than the ENIAC was, and your desktop computer has more processing power than the first
supercomputers.

Earth Simulator, Japan

Rank
Site

Country/Year
Computer / Processors

Manufacturer
Rmax
Rpeak

1 Earth Simulator Center
Japan/2002

Earth-Simulator / 5120
NEC

35860
40960

2
Lawrence Livermore
National Laboratory
United States/2004

Thunder
Intel Itanium2 Tiger4 1.4GHz -

Quadrics / 4096
California Digital Corporation

19940
22938

3
Los Alamos National

Laboratory
United States/2002

ASCI Q - AlphaServer SC45, 1.25 GHz
/ 8192

HP

13880
20480

Introduction to Number and Computer Systems

Page 33 of 41

Computer - Type indicated by manufacturer or vendor

Processors - Number of processors
Rmax - Maximal LINPACK performance achieved

Rpeak - Theoretical peak performance

FLOPS is acronym for FLoating-point Operations Per Second. For example, 15 Mflops equals
15 million floating-point arithmetic operations per second. Flops is used as a measure of a
computing system's speed of performing basic arithmetic operations such as adding, subtracting,
multiplying, or dividing two numbers. It usua lly refers to addition and subtractions which are the
fastest operations. Multiplication and especially division may be significantly slower (less
FLOPS). GFLOPS stands for Giga FLOPS, TFLOPS stands for Tera FLOPS.

The LINPACK Benchmark is based on LINPACK, representing a measure of a system's floating
point computing power. Introduced by Jack Dongarra, it measures how fast a computer solves
dense n by n systems of linear equations. The result is millions of floating point operations per
second (Mflops).

CPUs Used in Personal Computers

• Intel Processors
• AMD Processors
• Cyrix Processors
• Motorola Processors
• RISC Processors

Intel Processors

Since 1978, Intel's processors have evolved from the 8086 and the 8088 to the 80286, 80386, and
80486, to the Pentium family of processors. All are part of the 80x86 line. Intel's Pentium family
of processors includes the Pentium, Pentium Pro, Pentium with MMX, Pentium II to Pentium IV,
Celeron, and Xeon processors. The earliest Intel processors included only a few thousand
transistors. Today's Pentium processors include 9.5 million transistors or more.

Introduction to Number and Computer Systems

Page 34 of 41

AMD Processors

Advanced Micro Devices (AMD) was long known as a provider of lower-performance
processors for use in low-cost computers. With its K6 line of processors, AMD challenged Intel's
processors in terms of both price and performance. With the K6-III processor, AMD broke the
600 MHz barrier, claiming the "fastest processor" title for the first time in IBM-compatible
computers.

Cyrix Processors

Cyrix began as a specialty chip maker, but eventually began producing microprocessors. Cyrix
processors are most commonly used in low-price, low-end consumer PCs. Cyrix formerly
produced the MediaGX processor, and now produces the MII series of processors.

Motorola Processors

Motorola makes the CPUs used in Macintosh and PowerPC computers. Macintosh processors
use a different basic structural design (architecture) than IBM-compatible PC processors. With
the release of the G3 and G4 PowerPC processors, Macintosh computers set new standards for
price and performance.

RISC Processors

Most PCs are based on complex instruction set computing (CISC) chips which contain large
instruction sets. One CISC instruction consists of several simple instructions. Reduced

Introduction to Number and Computer Systems

Page 35 of 41

instruction set computing (RISC) processors use smaller instruction sets. This enables them to
process more instructions per second than (CISC) chips. RISC processors are found in Apple's
PowerPC systems, as well as many Handheld PCs (H/PCs), workstations, minicomputers, and
mainframes.

Parallel Processing

In parallel processing, multiple processors are used in a single system, enabling them to share
processing tasks. In a massively parallel processor (MPP) system, many processors are used.
Some MPP systems utilize thousands of processors simultaneously.

Memory

Computers use RAM (Random Access Memory) to hold the program code and data during
computation. A defining characteristic of RAM is that all memory locations can be accessed at
almost the same speed. Most other techno logies have inherent delays for reading a particular bit
or byte. Many types of RAM are volatile, which means that unlike some other forms of computer
storage such as disk storage and tape storage; they lose all data when the computer is powered
down. Modern RAM generally stores a bit of data as either a charge in a capacitor, as in
"dynamic RAM,", or the state of a flip-flop, as in "static RAM".

Extended Data Out (EDO) Dynamic Random Access Memory, a type of DRAM that is faster
than conventional DRAM. Unlike conventional DRAM which can only access one block of data
at a time, EDO RAM can start fetching the next block of memory at the same time that it sends
the previous block to the CPU.

Single in- line memory module (SIMM)
Dual in- line memory module (DIMM)

SDRAM (Synchronous DRAM)

Almost all systems used to ship with 3.3 volt, 168-pin SDRAM DIMMs. SDRAM is not an

Introduction to Number and Computer Systems

Page 36 of 41

extension of older EDO DRAM but a new type of DRAM altogether. SDRAM started out
running at 66 MHz, while older fast page mode DRAM and EDO max out at 50 MHz. SDRAM
is able to scale to 133 MHz (PC133) officially, and unofficially up to 180MHz or higher. As
processors get faster, new generations of memory such as DDR and RDRAM are required to get
proper performance.

DDR (Double Data Rate SDRAM)

DDR basically doubles the rate of data transfer of standard SDRAM by transferring data on the
up and down tick of a clock cycle. DDR memory operating at 333MHz actually operates at
166MHz * 2 (aka PC333 / PC2700) or 133MHz*2 (PC266 / PC2100). DDR is a 2.5 volt
technology that uses 184 pins in its DIMMs. It is incompatible with SDRAM physically, but uses
a similar parallel bus, making it easier to implement than RDRAM, which is a different
technology.

SIMM

DIMM

Memory Speed

SDRAM initially shipped at a speed of 66MHz. As memory buses got faster, it was pumped up
to 100MHz, and then 133MHz. The speed grades are referred to as PC66 (unofficially), PC100
and PC133 SDRAM respectively. Some manufacturers are shipping a PC150 speed grade. The
speed of DDR RAM is above 400 MHz.

Cache Memory

Cache Memory is fast memory that serves as a buffer between the processor and main memory.
The cache holds data that was recently used by the processor and saves a trip all the way back to
slower main memory. The memory structure of PCs is often thought of as just main memory, but
it's really a five or six level structure:

Introduction to Number and Computer Systems

Page 37 of 41

The first two levels of memory are contained in the processor itself, consisting of the processor's
small internal memory, or registers, and L1 cache, which is the first level of cache, usually
contained in the processor.

The third level of memory is the L2 cache, usually contained on the motherboard. However, the
Celeron chip from Intel actually contains 128K of L2 cache within the form factor of the chip.
More and more chip makers are planning to put this cache on board the processor itself. The
benefit is that it will then run at the same speed as the processor, and cost less to put on the chip
than to set up a bus and logic externally from the processor.

The fourth level, is being referred to as L3 cache. This cache used to be the L2 cache on the
motherboard, but now that some processors include L1 and L2 cache on the chip, it becomes L3
cache. Usually, it runs slower than the processor, but faster than main memory.

The fifth level (or fourth if you have no "L3 cache") of memory is the main memory itself.

The sixth level is a piece of the hard disk used by the Operating System, usually called virtual
memory. Most operating systems use this when they run out of main memory, but some use it in
other ways as well.

This six- tiered structure is designed to efficiently speed data to the processor when it needs it,
and also to allow the operating system to function when levels of main memory are low. You
might ask, "Why is all this necessary?" The answer is cost. If there were one type of super- fast,
super-cheap memory, it could theoretically satisfy the needs of this entire memory architecture.
This will probably never happen since you don't need very much cache memory to drastically
improve performance, and there will always be a faster, more expensive alternative to the current
form of main memory.

Bits, bytes and words

Computer memory consists of a large number of 'two-state devices' (flip-flops). We can think of
them as switches, which can be 'On' or 'Off'. If the switch is 'On' it is storing the digit 1. If the
switch is 'Off' it is storing the number 0. Hence the binary system of numbers is used, which
consists only of numbers containing 0s and 1s.

This is how the computer would store the binary number 1011

Introduction to Number and Computer Systems

Page 38 of 41

A bit (Binary digIT) is a 0 or a 1. So 1011 is a 4-bit binary number. All data (text, pictures,
sounds, video clips etc) is stored as binary numbers. The left-end bit of a number represented in
binary is called the most significant bit, abbreviated msb, and the right-end bit is called the least
significant bit, abbreviated lsb.

8 bits (b) = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

A word is the number of bits that the CPU can handle at a time (usually 16, 32, 64 or 128). When
we say 32 bit processor, the word size is 32 bits.

Software

Computer software is that part of a computer system that consists of encoded information (or
computer instructions), as opposed to the physical computer equipment (hardware) which is used
to store and process this information. The term is roughly synonymous with computer program
but is more generic in scope.

System, programming and application software

Practical computer systems divide software into three major classes: system software,
programming software and application software, although the distinction is somewhat arbitrary,
and often blurred.

• System software helps run the computer hardware and computer system. It includes
operating systems, device drivers, diagnostic tools, servers, windowing systems, utilities
and more. The purpose of systems software is to insulate the applications programmer as
much as possible from the details of the particular computer complex being use,
especially memory and other hardware features, and such accessory devices as
communications, printers, readers, displays, keyboards, etc.

• Programming software usually provides tools to assist a programmer in writing

computer programs and software using different programming languages in a more
convenient way. The tools include text editors, compilers, interpreters, linkers,
debuggers, and so on. An Integrated development environment (IDE) merges those tools
into a software bundle, and a programmer may not need to type multiple commands for
compiling, interpreter, debugging, tracing, and etc., because the IDE usually has an
advanced graphical user interface, or GUI.

• Application software allows humans to accomplish one or more specific (non-computer

related) tasks. Typical applications include industrial automation, business software,
educational software, medical software, databases and computer games. Businesses are

Introduction to Number and Computer Systems

Page 39 of 41

probably the biggest users of application software, but almost every field of human
activity now uses some form of application software.

Operating Systems

An operating system (OS) is an essential software program that manages the hardware and
software resources of a computer. The OS performs basic tasks, such as controlling and
allocating memory, prioritizing the processing of instructions, controlling input and output
devices, facilitating networking and managing files.

• The User Interface
• Running Programs
• Managing Files
• Managing Hardware
• Utility Software

Graphical User Interfaces (GUIs) - GUI Tools, Applications and the Interface, Menus, Dialog
Boxes, Command-Line Interfaces;

General-purpose computers, including personal computers and mainframes, must have an
operating system to run other programs, such as application software. Examples of operating
systems for personal computers include Microsoft Windows, Mac OS, Unix, and Linux.

The lowest level of any operating system is its kernel. This is the first layer of software loaded
into memory when a system boots or starts up. The kernel provides access to various common
core services to all other system and application programs. These services include, but are not
limited to: disk access, memory management, task scheduling, and access to other hardware
devices.

As well as the kernel, an operating system is often distributed with tools for programs to display
and manage a graphical user interface, as well as utility programs for tasks such as managing
files and configuring the operating system. They are also often distributed with application
software that does not relate directly to the operating system's core function, but which the
operating system distributor finds advantageous to supply with the operating system.

Today’s OS

Command line interface (or CLI) OS's such as DOS, use only the keyboard for input. Modern
OS's use a mouse for input with a graphical user interface (GUI) sometimes implemented as a
shell. The appropriate OS may depend on the hardware architecture, specifically the CPU, with
only Linux and BSD running on almost any CPU. Since the early 1990s the choice for personal
computers has been largely limited to the Microsoft Windows family and the Unix- like family,
of which Linux and Mac OS X are becoming the major choices. Mainframe computers and
embedded systems use a variety of different operating systems, many with no direct connection
to Windows or Unix, but typically more similar to Unix than Windows.

Introduction to Number and Computer Systems

Page 40 of 41

IBM PC compatible - Microsoft Windows and smaller Unix-variants (like Linux and BSD)
Apple Macintosh - Mac OS X, Windows, Linux and BSD
Mainframes - A number of unique OS's, sometimes Linux and other UNIX variants
Embedded systems - a variety of dedicated OS's, and limited versions of Linux or other OS's

[Multi-tasking, multi-programming, multi-processing, parallel processing, multi-

threading, distributed processing]

Computer Programs

The program tells the CPU to process interrupts, or sets of steps the CPU must follow to perform
a task. Computer hardware understands only machine code. To control hardware, a program
must be written in binary numbers (1s and 0s). This code is called machine code or machine
language. Programmers use programming languages to write code in nearly human language.
The resulting description is called source code. Compilers and interpreters translate a program
into object code, the binary version of source code.

The order in which program statements are executed is called program control flow. To
determine program control flow, programmers may use a flowchart to map the program's
sequence. Programmers may also create a simple text version of a program's code – called
pseudo code – to determine how the program will flow.

Programming Languages

The first widely used high- level programming language was FORTRAN, developed during
1954–57 by an IBM team led by John W. Backus. It is still widely used for numerical work, with
the latest international standard released in 2004.

Dennis Ritchie developed the C programming language, initially for DEC PDP-11 in 1970.
During the 1970s, Xerox PARC developed Smalltalk, an object oriented language. Based on the
development of Smalltalk and other object oriented languages, Bjarne Stroustrup developed a
programming language based on the syntax of C, called C++ in 1985.

Sun Microsystems released Java in 1995 which became very popular as an introductory
programming language taught in universities. Microsoft presented the C# programming language
in 2001 which is very similar to C++ and Java. There are many, many other programming
languages.

Compilation and interpretation

There are, broadly, two approaches to execute a program written in a given language. These
approaches are known as compilation, done by a program known as a compiler; and
interpretation, done by an interpreter. Some programming language implementations support
both interpretation and compilation.

Introduction to Number and Computer Systems

Page 41 of 41

An interpreter parses a computer program and executes it directly. One can imagine this as
following the instructions of the program line-by- line. In contrast, a compiler translates the
program into machine code – the native instructions understood by the computer's processor. The
compiled program can then be run by itself.

Compiled programs usually run faster than interpreted ones, because the overhead of
understanding and translating the programming language syntax has already been done.
However, interpreters are frequently easier to write than compilers, and can more easily support
interactive debugging of a program.

Many modern languages use a mixture of compilation and interpretation. For example, the
"compiler" for a byte code-based language translates the source code into a partially compiled
intermediate format, which is later run by a fast interpreter called a virtual machine. Some
"interpeters" actually use a just- in-time compiler, which compiles the code to machine language
immediately before running it. These techniques are often combined.

