
Reinforcement Learning (RL)

� agents learn by direct interaction with their
environment

� assumption: the goals of the agents can be
defined in terms of a reward function

� this is the ideal setting for learning with
reactive agents!

� the framework on which this type of learning
works is known as a Markov Decision Process
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Markov Decision Process (MDP)

Let S be a set of states and A a set of actions.

At time step t, the agent is in state st and performs
action at. The environment responds with a
reward rt = r(st, at) and by producing a
succeeding state st+1 = δ(st, at)

Goal: learn a policy π : S → A
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Policies in MDPs

What is a good policy in an MDP?

Typically, it is one that maximises discounted

cumulative reward i.e. Vπ(st) = ∑i≥0 γirt+i

where 0 ≤ γ ≤ 1 is a discount factor and rt+i is
the reward received i timesteps into the future
while performing actions according to policy π.

NB: for γ = 0 the agent is interested only in
immediate reward.
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The optimal MDP policy

Goal: agent learns a policy π that maximises
Vπ(s) for all states s.

Optimal policy π∗ = arg maxπ Vπ(s)

NB: for simplicity, we often write V∗(s) to

mean Vπ
∗

(s), the value of the optimal policy.
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MDP: reward function r(s, a)
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MDP: V∗(s) for γ = 0.9
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MDP: optimal policy
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Learning the optimal value function V
∗

The optimal action in state s is the action a that
maximises the sum of immediate reward r(s, a)
plus the value V∗ of the immediate successor
state, discounted by γ

π∗(s) = arg max
a

[r(s, a) + γV∗(δ(s, a))]

If functions δ and r are known, then the agent can acquire

π
∗ by learning V

∗, which is an evaluation function on states.
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Q Learning

What if δ and r are unknown?

Learn the Q function:
Q(s, a) = r(s, a) + γV∗(δ(s, a))

It is possible to learn pi∗ if both gamma and r are
unknown by learning Q!
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Q learning: algorithm (1/2)

� V∗(s) = maxa′ Q(s, a′)

� Q(s, a) = r(s, a) + γ maxa′ Q(δ(s, a), a′)

Question: How do we learn this new Q function?

Answer: Observe reward and update the estimate

Q̂ of the actual function accordingly.
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Q Learning: algorithm (2/2)

Compute estimate Q̂ of Q
foreach state s and action a do

Q̂(s, a) = 0;
end

while true do

select action a and execute it;
observe new state s′ and reward r;
Q̂(s, a) = r + γ maxa′ Q̂(s′, a′);
s = s′;

end
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Q Learning: setting

The task works in episodes because the goal is an
absorbing state

1. the lion starts in some state of the world
randomly

2. the lion chooses a move to execute

3. the lion updates the Q̂ estimate of the
state-action pair

4. this continues until the lion gets to the goal
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Q Learning: trace (1/)
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The lion starts in the bottom left corner.

Spiros Kapetanakis - AFG - University of York – p. 16/36



Q Learning: trace (2/)
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The lion makes a move to the right.
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Q Learning: trace (3/)
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The lion makes another move to the right.
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Q Learning: trace (4/)
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The lion goes up. Beef sandwich anyone?
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Q Learning: trace (5/)
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The lion starts in the top left corner.
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Q Learning: trace (6/)
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The lion moves to the right.
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Q Learning: trace (7/)
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The lion goes right. It’s still hungry!
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Q Learning: trace (8/)
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The lion starts in the bottom middle square.
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Q Learning: trace (9/)
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The lion goes left.
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Q Learning: trace (10/)
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The lion goes right.
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Q Learning: trace (11/)
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The lion goes right again.
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Q Learning: trace (12/)
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After a few episodes, this is the situation.
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Q Learning: trace (13/13)
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One extra move to the right.
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The beauty of Q

Q̂ converges to Q if:

� the MDP is deterministic (also works for
stochastic MDPs with some changes)

� rewards have an upper bound

� agent visits every state-action transition
infinitely often

In practice, the final point isn’t necessary for
Q learning to work.
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Exploration strategies

How should the learning agent (e.g. lion) choose
what action to perform next during learning ?

� choose seemingly optimal action (using Q̂):
may get stuck at local optimum

� Boltzmann exploration: P(ai|s) = kQ̂(s,a)

∑aj
k

Q̂(s,aj)

� value of k determines how much the agent

bases its decision on current Q̂ estimate
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Optimisation

How can the convergence speed of Q learning be
improved?

� reordering the updates

� storing past state-action transitions together
with observed rewards and retraining on
them periodically

� still an open research area!
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Generalisation

� Q learning needs to store values for all
state-action pairs

� this couls be an astronomically large number!

� better: use function approximation of Q̂

� example: use a neural network for storing the

Q̂ estimates and update network weights
after each state-action transition

� similar to the approach taken by TD-Gammon
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RL: advantages

� beatifully elegant formulation

� convergence guarantee for Q learning

� natural setting for reactive agents
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RL: disadvantages

� only applicable to reactive agents (almost)

� often tricky to design the reward function

� theoretically guaranteed convergence of
Q-learning can be too slow in practice

� state-space explosion with more agents

� learning result is non-transparent in general
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