
Artificial Intelligence
CSC348 Unit 4: Reasoning, change and planning

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org



Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and this unit 
will be available shortly from the following URL:

� http://www.geocities.com/syedatnsu/

Acknowledgements

�These lecture notes contain material from the following 
sources

� Logical Programming and Artificial Intelligence by S. 
Kapetanakis, 2004

� Artificial Intelligence: A modern approach by S. Russell 
and P. Norvig, International Edition, 2nd edition

� Intelligent Systems by S.Clark, 2005

© 2006 Syedur Rahman



Planning intuitively

The goal in planning is to find a sequence of actions that, when

executed from some starting state s0, will achieve a set of goals 

or objectives.



Situation Calculus

The situation calculus is one method of representing change in the 

world. The language that we will use is first-order logic. It works by 

maintaining an up-to-date version of the state of the world, i.e. by 

tracking changes in the world. Example: the dynamic blocks world:

situation calculus: result(putdown(H), s0) = s1



The Result Function

The result function is used to describe the situation 

that results from performing an action in a situation:

result(α, s) stands for the situation that exists when 

action α is executed in situation s.



Predicates: new and old

Predicates that change the situation in the world need an extra 
argument to say in what situation they were true. In the blocks 
world:

1. held(x) becomes held(x, s) and

2. on(x, table) becomes on(x, table, s)

Predicates that do not change between situations do not need 
the extra argument so block(x) remains unchanged.

We also have two new predicates to represent the actions:

1. pickup(a) denotes the action of picking up block a.

2. putdown(b) denotes the action of putting the block that is 
currently held on top of b.



Introduction to STRIPS 

The language of STRIPS is propositional or first-order logic. The 

state of the world is represented by a conjunction of literals, (but 

first-order literals must be ground and function-free)

The Closed World Assumption (CWA) holds: everything that is 

not mentioned in a state is assumed to be false.

The current state is represented as a conjunction of literals.

The goal is represented in STRIPS as a conjunction of positive 

(non-negated) literals. The goal is satisfied if the current state 

contains all (positive) literals in the goal.

An action in is represented by a set of preconditions that must 

hold before it can be executed and a set of effects that happen 

when it is executed. 



More about STRIPS

For readability, it is common to separate the effects of an action in 
STRIPS into:

1. an add list which contains the positive literals

2. a delete list which contains the negative literals

Result of an action:

1. the positive literals in the effect are added to the state

2. any negative literals in the effect that match existing positive literals 
in the state make the positive literals disappear 

3. everything else remains as it is

Exceptions:

1. positive literals already in the state are not added again.

2. negative literals that match with nothing in the state are ignored.

Goals in STRIPS can contain variables. They are assumed to be 
existentially quantified.



Blocks World Example

Predicates:

block(x) ≡ x is a block

clear(x) ≡ x is clear, i.e. there is nothing on top of x

on(x, y) ≡ x is on top of y

Actions:

Action(Move(b, x, y),

PRECOND: on(b, x) ∧ clear(b) ∧ clear(y) ∧ block(b) 

∧ block(y) ∧ (b≠x) ∧ (b≠y) ∧ (x≠y) 

EFFECT: on(b, y) ∧ clear(x) ∧ ¬on(b, x) ∧ ¬clear(y))

Action(MoveToTable(b, x),

PRECOND: on(b, x) ∧ clear(b) ∧ (b≠x) ∧ block(b) 

EFFECT: on(b, table) ∧ clear(x) ∧ ¬on(b, x))

The next page shows the complete description of a planning problem in the 
blocks world using STRIPS





Planning and Search

The planning problem can be seen as a search

problem.

We can move from one state of the problem to 

another in both a forward and backward 

direction because the actions are defined in 

terms of both preconditions and effects.

�Forward search: progression planning

�Backward search: regression planning



Progression Planning

Basic Algorithm:

1. start at the initial state.

2. an action is applicable in a state if its preconditions are 

satisfied

3. generate successor states from all applicable actions

4. check whether we have reached the goal i.e. whether the 

current state satisfies the goal of the planning problem

5. typically, the step cost in a STRIPS planner is just 1

But, one can instantly see that forward planning is very 
inefficient. In fact, it suffers from all the caveats of the 
underlying search algorithm.



Regression Planning
A better way to solve a planning problem is through backward 
state-space search, i.e. by starting at the goal and working our 
way back to the initial state.

Advantage: we need only consider moves that achieve part of 
the goal! As we’re using STRIPS, there is no problem in 
finding the predecessors of a state.

Example: the goal is to have a column A->B->C->table

�it is relevant to find a way to put B on top of C

�it is also relevant to find a way to put A on top of B

�it is not relevant to find a way to put A on C

�it is not relevant to find a way to put C on A

Another property that we must insist on is consistency i.e. the 
actions we select do not undo any of the desired (goal) literals.



Regression Planning

Simplified algorithm:

� select a literal from the goal description

� select an action which contains the selected literal 

in its add list

� add the preconditions of the selected action to the 

current state and remove literals in the add list

� return success when the start state is (a subset of) 

the current list of literals


