
Artificial Intelligence
CSC348 Unit 3: Problem Solving and Search

Part 2: Informed Search Techniques

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org



2

Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and this unit 
will be available shortly from the following URL:

� http://www.geocities.com/syedatnsu/

Acknowledgements

�These lecture notes contain material from the following 
sources

� Logical Programming and Artificial Intelligence by S. 
Kapetanakis, 2004

� Artificial Intelligence: A modern approach by S. Russell 
and P. Norvig, International Edition, 2nd edition

� Intelligent Systems by S.Clark, 2005

© 2006 Syedur Rahman



3

Best-first search

�Node is selected for expansion based on an 

evaluation function f(n)

� Evaluation function estimates distance to the goal 

�Choose node which appears best

� Implementation:

�fringe is a priority queue sorted in ascending 

order of f-values



4

A heuristic function h(n)

� Dictionary defn: “A rule of thumb, simplification, 

or educated guess that reduces or limits the search 

for solutions in domains that are difficult and 

poorly understood”

� For best-first search:

h(n) = estimated cost of the cheapest path from 

node n to goal node



5

Example: Romania



6

Romania with step costs in km

� hSLD=straight-line distance 

heuristic

� hSLD cannot be computed 

from the problem 

description itself

� In greedy best-first 

search f(n)=h(n)

�Expand node that is 

closest to goal



7

Greedy search example

� Greedy search to solve the Arad to Bucharest problem

Arad (366)



8

Greedy search example

� Greedy best-first search will select Sibiu

Arad

Sibiu(253)

Timisoara

(329)

Zerind(374)



9

Greedy search example

� Greedy best-first search will select Fagaras

Arad

Sibiu

Arad

(366)
Fagaras

(176)

Oradea

(380)

Rimnicu Vilcea

(193)



10

Greedy search example

� Goal reached 

�For this example no node is expanded that is not on the 

solution path

�But not optimal (see Arad, Sibiu, Rimnicu Vilcea, 

Pitesti)

Arad

Sibiu

Fagaras

Sibiu

(253)

Bucharest

(0)



11

Greedy search: evaluation

� Complete or optimal: no

�Minimizing h(n) can result in false starts, e.g. Iasi to 

Fagaras

�Check on repeated states



12

Greedy search: evaluation

� Time and space complexity:

�In the worst case all the nodes in the search tree 

are generated:

(m is maximum depth of search tree and b is 

branching factor)

�But: choice of a good heuristic can give dramatic 

improvement

O(bm )



13

A* search

� Best-known form of best-first search

� Idea: avoid expanding paths that are already expensive

� Evaluation function f(n)=g(n) + h(n)

�g(n): the cost (so far) to reach the node

�h(n): estimated cost to get from the node to the goal

�f(n): estimated total cost of path through n to goal

� A* search is both complete and optimal if h(n) satisfies 

certain conditions



14

A* search

�A* search is optimal if h(n) is an admissible 
heuristic 

�A heuristic is admissible if it never overestimates
the cost to reach the goal

�h(n) <= h*(n) where h*(n) is the true cost from n

�Admissible heuristics are optimistic about the cost 
of solving the problem

� e.g. hSLD(n) never overestimates the actual road 
distance



15

Romania example



16

A* search example



17

A* search example



18

A* search example



19

A* search example



20

A* search example



21

A* search example



22

A* and GRAPH-SEARCH

� GRAPH-SEARCH discards new paths to a repeated 
state

�So may discard the optimal path

� Solutions:

�Remove more expensive of the two paths

�But requires extra book-keeping

�Ensure that the optimal path to any repeated state 
is always the first one followed

�Requires extra condition on h(n): consistency
(or monotonicity)



23

Consistency 

� A heuristic is consistent if

� If h is consistent, we have

� i.e. f(n) is nondecreasing along any path

�and so A* using GRAPH-SEARCH expands nodes in non-
decreasing order of f(n)

h(n) ≤ c(n,a,n') + h(n')

f (n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

≥ f (n)



24

A* search: evaluation

�Complete: yes

�Unless there are infinitely many nodes with 

f<f(G)

�Since bands of increasing f are added

�Optimal: yes

�A* is optimally efficient for any given h(n): no 

other optimal algorithm is guaranteed to expand 

fewer nodes



25

A* search: evaluation

� Time complexity: 

�number of nodes expanded is still exponential in 

length of solution

� Space complexity:

�All generated nodes are kept in memory

�A* usually runs out of space before running out 

of time


