Artificial Intelligence

CSC348 Unit 3: Problem Solving and Search

Syedur Rahman

Lecturer, CSE Department
North South University

syedur.rahman@wolfson.oxon.org

Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and

this unit will be available shortly from the following
URL:

http://www.geocities.com/syedatnsu/

Acknowledgements

These lecture notes contain material from the following
sources

Intelligent Systems by S.Clark, 2005

Logical Programming and Artificial Intelligence by S.
Kapetanakis, 2004

Artificial Intelligence: A modern approach by S. Russell
and P. Norvig, International Edition, 2nd edition

2

© 2006 Syedur Rahman

Unit 3: Problem Solving and Search

Problem Solving Agents

Problem Formulation and Search Spaces
Tree Search Algorithm

Breadth First Search

Depth First Search

Depth Limited Search

Uniform Cost Search

Iteratively Deepening Search

Best First Search

A* Search

Problem-solving agent

Four general steps in problem solving:
Goal formulation
What are the successful world states
Problem formulation
What actions and states to consider given the goal

Search

Examine different possible sequences of actions
that lead to states of known value and then choose
the best sequence

Execute
Perform actions on the basis of the solution

Example: Romania

Meamt
] -
] lasi
a3
Siblu o FHIEHI'HH
o M vasiul
an
TImlsoas Hlmni:IJ‘l"IL'.‘EE
147
111 21
= Lugo] Pitest|
- el
T o3
25] =] Hirsowa
] Mehadla 101 Urzlcen|
5 - 36
i 138 Bucharest
Dobreta [13
] I:I:I .
Cralowva Efarie

[Giumgiu

Example: Romania

On holiday in Romania; currently in Arad
Flight leaves tomorrow from Bucharest
Formulate goal
Be in Bucharest
Formulate problem
States: various cities
Actions: drive between cities
Find solution

Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest,

Problem type

Given how we have defined the problem:
Environment is fully observable
Environment is deterministic
Environment is sequential
Environment is static
Environment is discrete

Environment is single-agent

Problem formulation

A problem is defined by:

An initial state, e.g. In(Arad)

A successor function §(X)= set of action-state pairs
e.g2. S(In(Arad))={(Go(Sibiu), In(Sibiu)), (Go(Zerind), In(Zerind)),...

initial state + successor function = state space

Goal test
Explicit, e.g. x=‘In(Bucharest)’
Implicit, e.g. checkmate(x)

Path cost (assume additive)
e.g. sum of distances, number of actions executed, ...
c(x,a,y) is the step cost, assumed to be >=0

A solution is a sequence of actions from 1initial to goal state;
the optimal solution has the lowest path cost

Example: 8-puzzle

7 2 (| 4 1

5 6 3 || 4

8 3 (| 1 6 7
Start State Goal State

States??
Initial state??
Actions??
Goal test??
Path cost??

Example: 8-puzzle

7 2 4 1 2

S 6 3 4 S

8 3 1 6 7 8
Start State Goal State

States: location of each tile plus blank

Initial state: Any state can be 1nitial

Actions: Move blank {Left, Right, Up, Down }

Goal test: Check whether goal configuration is reached

Path cost: Number of actions to reach goal

10

Example: 8-queens problem

Incremental formulation vs. complete-state formulation
States??
Initial state??
Actions??
Goal test??
Path cost??

11

Example: 8-queens problem

e

IIIWI

s

States: Any arrangement of O to 8 queens on the board

Incremental formulation

Initial state: No queens

Actions: Add queen to any empty square

Goal test: 8 queens on board and none attacked
Path cost: N/A

3 x 10'# possible sequences to investigate

12

Example: 8-queens problem

Incremental formulation (alternative)

States?? n (0< n< 8) queens on the board, one per column in the n
leftmost columns with no queen attacking any other

Actions?? Add queen in leftmost empty column such that is not
attacking any other queen

2057 possible sequences to investigate; solutions are easy to find
But with 100 queens the problem i1s much harder

13

Real World Examples

Route-finding problems
Touring problems

Travelling Salesman problem
VLSI layout problem

Robot navigation

Automatic assembly sequencing
Internet searching

14

Basic search algorithms

How do we find the solutions of previous problems?
Search the state space
State space can be represented by a search tree
Root of the tree 1s the initial state
Children generated through successor function

In general we may have a search graph rather than tree
(same state can be reached through multiple paths)

15

Simple tree search example

(a) The initial state CAnad D

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem
do

if no candidates for expansion then return failure

choose leaf node for expansion according to strategy

if node contains goal state then return solution

else expand the node and add resulting nodes to the search tree
enddo

16

Simple tree search example

(b} After expanding Arad

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem
do

if no candidates for expansion then return failure

choose leaf node for expansion according to strategy

if node contains goal state then return solution

else expand the node and add resulting nodes to the search tree
enddo

17

Simple tree search example

() After expanding Sibiu

IFrilsaara

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize search tree to the initial state of the problem

do
if no candidates for expansion then return failure
choose leaf node for expansion according to strategy <« Determines search process
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree
enddo

18

State space vs. search tree

Parmrr-MonE

AcTion = right
Depta= 06
Parn CosT =0

5 o

A state corresponds to a configuration of the world

=111
[-JI[-J|L- |

A node 1s a data structure in a search tree

e.g. node= <state, parent-node, action, path-cost, depth>

19

Search strategies

A search strategy is defined by picking the order of node expansion
Problem-solving performance is measured in four ways:

Completeness: Is a solution found if one exists?

Optimality: Does the strategy find the optimal solution?

Time Complexity: How long does it take to find a solution?

Space Complexity: How much memory is needed to perform the search?
Time and space complexity are measured in terms of problem difficulty defined
by:

b - branching factor of the search tree

d - depth of the shallowest goal node

m - maximum length of any path in the state space

20

Uninformed search strategies

Uninformed search (or blind search)

Strategies have no additional information about states
beyond that provided in the problem definition

Informed (or heuristic) search strategies know whether
one state 1s more promising than another

Uninformed strategies (defined by order in which nodes are expanded):
Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Bidirectional search

21

Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe 1s a FIFO queue

>O "

22

Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe 1s a FIFO queue

23

Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe 1s a FIFO queue

24

Breadth-first search

Expand shallowest unexpanded node

Implementation: fringe 1s a FIFO queue

25

Breadth-first search

Completeness: 1s a solution always found if one exists?
YES

It shallowest goal node 1s at some finite depth
d

If branching factor b 1s finite

BF search 1s optimal 1f the path cost 1s a non-
decreasing function of the depth of the node

26

Breadth-first search

Time complexity
Assume a state space where every state has b successors
Assume solution 1s at depth d
Worst case: expand all but the last node at depth d
Total number of nodes generated:
b+b*+b’+..+b'+ (" =b)=00b"")

Space complexity: every node generated must remain in
memory, so same as time complexity

27

Breadth-first search

Memory requirements are a bigger problem than execution time

Exponential complexity search problems cannot be solved by BF
search (or any uninformed search method) for any but the smallest
instances

DEPTH NODES TIME MEMORY
2 1100 0.11 seconds 1 megabyte
4 111100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 10° 31 hours 1 terabyte
10 10! 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 101 3523 years 1 exabyte

Uniform-cost search

Extension of BF-search:
Expand node with lowest path cost

Implementation: fringe = queue ordered by path
cost

UC-search 1s the same as BF-search when all step-
costs are equal

29

Uniform-cost search

Completeness:

YES, if step-cost > €
Time and space complexity:

Assume C* is the cost of the optimal solution

Assume that every action costs at least €
*
Worst-case: O(b°)

Optimality:
nodes expanded in order of increasing path cost
YES, if complete

30

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

()4

31

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

32

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

33

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

34

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

35

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

Q
B .-r""-..f A-H-"“'--ﬁ

O

&
aj
d

H' 1

o

36

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

37

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

38

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

A

o0

39

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

O
oy
B .~ HHC
F H
b
K

¢

e
D , E

7
I

i b

40

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

A

J\. P

I KL"'-

1

©0 000

41

Depth-first search

Expand deepest unexpanded node

Implementation: fringe 1s a LIFO queue (=stack)

O

*-,._
.__.-"

mC
g hE d%
H.HI -"-Ki' M

42

DF-search: evaluation

Completeness:

Is a solution always found if one exists?

No (unless search space 1s finite and no loops are
possible)

Optimality:
Is the least-cost solution always found?
No

43

DF-search: evaluation

Time complexity: O(™)
In general, time 1s terrible if m (maximal depth)

1s much larger than d (depth of shallowest
solution)

But if there exist many solutions then faster than
BF-search

Space complexity: O(bm +1)

Backtracking search uses even less memory (one
successor instead of all b)

44

Depth-limited search

DF-search with depth limit /
1.e. nodes at depth / have no successors
Problem knowledge can be used
Solves the infinite-path problem
If / < d then incompleteness results
Time complexity: ob")
Space complexity: O(bl)

45

Depth-limited search with 1=2

o o

@
@

48

49

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-
STATE[problem)),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff
cutoff_occurred? < false
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node] == limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «<— RECURSIVE-DLS(successor, problem, limit)
if result == cutoff then cutoff _occurred? < true
else if result #failure then return result
if cutoff_occurred? then return cutoff else return failure

50

Iterative deepening search

A general strategy to find best depth limit /

Goal 1s found at depth d, the depth of the
shallowest goal-node

Often used in combination with DF-search
Combines benetits of DF- and BF-search

51

Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure
inputs: problem
for depth «— 0 to o do

result < DEPTH-LIMITED_SEARCH(problem, depth)
if result # cuttoff then return result

52

ID-search, example

Limit=0

53

ID-search, example

Limit=1

+O O/Q“ /O\
- e O

o e

ID-search, example
Limit=2

»O

ID-search, example

Limit=3

b

oo @ .@
56

£

ID search: evaluation

Time complexity: O(bd)
Algorithm seems costly due to repeated generation of certain
states

Node generation: N(IDS)=(d)b+ (d—1)b" +...+ (1)b*

leveld:-once N(BES)=b+b* + ..+ b + (b"" - b)
level d-1: 2

level d-2: 3

level 2: d-1

level 1:
N (IDS% = %O + 5flOO + 3000+ 20000+ 100000=123450
N(BFS)=10+100+1000+ 10000+ 100000+ 999990=1111100

Comparison for b=10 and d=5, solution at far right
57

Summary of algorithms

Criterion Breadth-First Uniform-cost Depth-First Depth-limited Iterative Bidirectional
deepening search
Complete? YES* YES* NO YES, YES YES*
ifl>d
Time ba+1 HCe b b! b4 b2
Space bi+! bCe bm bl bd b
Optimal? YES* YES* NO NO YES YES

58

Repeated states

Failure to detect repeated states can turn solvable problems
into unsolvable ones

(a) (b) (c)

59

Graph search algorithm

Closed list stores all expanded nodes

function GRAPH-SEARCH(problem,fringe) return a solution or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|[problem]), fringe)
loop do
if EMPTY ?(fringe) then return failure
node <~ REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] succeeds
then return SOLUTION(node)
if STATE[node] is not in closed then
add STATE][node] to closed
fringe < INSERT-ALL(EXPAND(node, problem), fringe)

60

Graph search, evaluation

Optimality:
GRAPH-SEARCH discards newly discovered paths

This may result 1n a sub-optimal solution, except
when uniform-cost search or BF-search with
constant step cost 1s used

Time and space complexity:
proportional to the size of the state space
(may be much smaller than O(b%))

DF- and ID-search with closed list no longer have linear
space requirements since all nodes are stored in the
closed list

61

Best-first search

Node 1s selected for expansion based on an
evaluation function f(n)

Evaluation function estimates distance to the goal
Choose node which appears best
Implementation:

fringe 1s a priority queue sorted in ascending
order of f-values

62

A heuristic function h(n)

Dictionary defn: ‘A rule of thumb, simplification,
or educated guess that reduces or limits the search
for solutions in domains that are difficult and
poorly understood”

For best-first search:

h(n) = estimated cost of the cheapest path from
node n to goal node

63

Romania with step costs in km

Arad

Buocharest

Craxova
Dobreta

180
242
161
176

77
151
226
144

Rimmicu Vikea

241
2H
380
100

193
153
329

159
LY

hg; p=straight-line distance
heuristic

hg; , cannot be computed
from the problem
description itself

In greedy best-first
search f(n)=h(n)

Expand node that 1s
closest to goal

64

Greedy search example

Arad (366)
D

Greedy search to solve the Arad to Bucharest problem

65

Greedy search example

Arad
Sibiu(253 —Zerind(374)

Timisoara
(329)

Greedy best-first search will select Sibiu

66

Greedy search example

Arad
Sibiu
>
A;g‘g Fagaras Oradea Rimnicu Vilcea
GO 176 @soy (193

Greedy best-first search will select Fagaras

67

Greedy search example

Arad

—

s

Fagaras

Sibiu ucharest
(253) (0)
Goal reached

For this example no node 1s expanded that is not on the
solution path

But not optimal (see Arad, Sibiu, Rimnicu Vilcea,
Pitesti)

68

Greedy search: evaluation

Complete or optimal: no

Minimizing h(n) can result in false starts, e.g. Iasi to
Fagaras

Check on repeated states

[Crackea

69

Greedy search: evaluation

Time and space complexity:

In the worst case all the nodes 1n the search tree
are generated: Ob™)

(m 1s maximum depth of search tree and b 1s
branching factor)

But: choice of a good heuristic can give dramatic
improvement

70

A* search

Best-known form of best-first search
Idea: avoid expanding paths that are already expensive
Evaluation function f(n)=g(n) + h(n)
g(n): the cost (so far) to reach the node
h(n): estimated cost to get from the node to the goal
f(n): estimated total cost of path through n to goal

A* search 1s both complete and optimal if /(n) satisties
certain conditions

71

A* search

A* search 1s optimal if h(n) 1s an admissible
heuristic

A heuristic 1s admissible if it never overestimates
the cost to reach the goal

h(n) <= h*(n) where h*(n) 1s the true cost from n

Admissible heuristics are optimistic about the cost
of solving the problem

e.g. hg p(n) never overestimates the actual road
distance

72

Romania example

= Cradea
7 MNeamt
A
"] ET
55 Zarind 151
] lazi
Arad 140
L=
Sibiu o Fawrﬂg
L% o ™ Vasiul
20
Timlscars Hlmni:uﬂi:.‘ea
142
111 211
7 Lugo] P iestl
s &)
T QF
25 B =1 Hirsowa
] Mehadia 101 U rzlcenl
= - 26
i3 138 Bucharest
Cobreta [10
] I:':l -
Cralova Efarie
[Giurgiu

73

A* search example

(2] The= initial state

QGGE=0+4366

74

A* search example

After expanding Arad R,

383=140+253 H7=118+320 4409=75+374

75

A* search example

lc) After expanding Sibin {'__jn]a-ﬂ_- ™,

447=118+320

B4G=280+366 415=2304176 G671=291+380 413=220+193

440=T5+374

76

A* search example

id) After expanding Rimnicn Vilcea T

— -

511-5_2-Eﬂ+355 -1-1 3=2384170 5?1 281+380 -

-'“-

SE=300+160 417=317+100 553=300+253

H7=118+320

- Efu:;ie | Sy

)

448=75+374

77

A* search example

ie) After expanding Fagaraz c,.--—ﬁr;a-—-.}

wm> -

— 447=118+329 440=75+374

G46=280+36G A T GV 1=201+380

TS > T

281=338+253 450=450+0 E26=366+160 417=317+100 553=300+253

78

A* search example

if) After expanding Pitesti S s

e L TR 447=118+320 440=75+374
646=280+366 7 . B71=201+380
BO1=338+4253 450=45040 EEE::EI&E»HE@___,--' i __5_53=3m+253

p.- qmm .; -m -.-rnnu:u Vicaa

418=41840 B15=455+160 GOT=414+193

79

A* and GRAPH-SEARCH

GRAPH-SEARCH discards new paths to a repeated
state

So may discard the optimal path
Solutions:
Remove more expensive of the two paths
But requires extra book-keeping

Ensure that the optimal path to any repeated state
1s always the first one followed

Requires extra condition on A(n): consistency
(or monotonicity)

80

Consistency

A heuristic 1s consistent if

h(n)<c(n,a,n")+ h(n')

If h 1s consistent, we have c(n,a,n)

¥
f(n')=gn)+h(n') @ W
=g(n)+c(n,a,n")+ h(n') .
2 g(n)+ h(n)

T
> f(n) @

1.e. f(n) 1s nondecreasing along any path

and so A* using GRAPH-SEARCH expands nodes in non-
decreasing order of f(n)

81

A* search: evaluation

Complete: yes
Unless there are infinitely many nodes with

J<HG)
Since bands of increasing f are added
Optimal: yes
A* 1s optimally efficient for any given h(n): no

other optimal algorithm 1s guaranteed to expand
fewer nodes

82

A* search: evaluation

Time complexity:
number of nodes expanded 1s still exponential 1n
length of solution

Space complexity:
All generated nodes are kept in memory

A* usually runs out of space before running out
of time

83

