
Artificial Intelligence
CSC348 Unit 3: Problem Solving and Search

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org

2

Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and
this unit will be available shortly from the following
URL:

� http://www.geocities.com/syedatnsu/

Acknowledgements

�These lecture notes contain material from the following
sources

� Intelligent Systems by S.Clark, 2005

� Logical Programming and Artificial Intelligence by S.
Kapetanakis, 2004

� Artificial Intelligence: A modern approach by S. Russell
and P. Norvig, International Edition, 2nd edition

© 2006 Syedur Rahman

3

Unit 3: Problem Solving and Search

� Problem Solving Agents

� Problem Formulation and Search Spaces

� Tree Search Algorithm

�Breadth First Search

�Depth First Search

�Depth Limited Search

�Uniform Cost Search

� Iteratively Deepening Search

�Best First Search

�A* Search

4

Problem-solving agent

� Four general steps in problem solving:

�Goal formulation

�What are the successful world states

�Problem formulation

�What actions and states to consider given the goal

�Search

�Examine different possible sequences of actions
that lead to states of known value and then choose
the best sequence

�Execute

�Perform actions on the basis of the solution

5

Example: Romania

6

Example: Romania

� On holiday in Romania; currently in Arad

�Flight leaves tomorrow from Bucharest

� Formulate goal

�Be in Bucharest

� Formulate problem

�States: various cities

�Actions: drive between cities

� Find solution

�Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest,

…

7

Problem type

�Given how we have defined the problem:

�Environment is fully observable

�Environment is deterministic

�Environment is sequential

�Environment is static

�Environment is discrete

�Environment is single-agent

8

Problem formulation

� A problem is defined by:

� An initial state, e.g. In(Arad)

� A successor function S(X)= set of action-state pairs

� e.g. S(In(Arad))={(Go(Sibiu), In(Sibiu)), (Go(Zerind), In(Zerind)),…}

initial state + successor function = state space

� Goal test

� Explicit, e.g. x=‘In(Bucharest)’

� Implicit, e.g. checkmate(x)

� Path cost (assume additive)

� e.g. sum of distances, number of actions executed, …

� c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state;

the optimal solution has the lowest path cost

9

Example: 8-puzzle

� States??

� Initial state??

� Actions??

� Goal test??

� Path cost??

10

Example: 8-puzzle

� States: location of each tile plus blank

� Initial state: Any state can be initial

� Actions: Move blank {Left, Right, Up, Down}

� Goal test: Check whether goal configuration is reached

� Path cost: Number of actions to reach goal

11

Example: 8-queens problem

Incremental formulation vs. complete-state formulation

� States??

� Initial state??

� Actions??

� Goal test??

� Path cost??

12

Example: 8-queens problem

Incremental formulation

� States: Any arrangement of 0 to 8 queens on the board

� Initial state: No queens

� Actions: Add queen to any empty square

� Goal test: 8 queens on board and none attacked

� Path cost: N/A

3 x 1014 possible sequences to investigate

13

Example: 8-queens problem

Incremental formulation (alternative)

� States?? n (0≤ n≤ 8) queens on the board, one per column in the n
leftmost columns with no queen attacking any other

� Actions?? Add queen in leftmost empty column such that is not
attacking any other queen

� 2057 possible sequences to investigate; solutions are easy to find

�But with 100 queens the problem is much harder

14

Real World Examples

�Route-finding problems

� Touring problems

� Travelling Salesman problem

�VLSI layout problem

�Robot navigation

�Automatic assembly sequencing

� Internet searching

15

Basic search algorithms

� How do we find the solutions of previous problems?

�Search the state space

�State space can be represented by a search tree

�Root of the tree is the initial state

�Children generated through successor function

�In general we may have a search graph rather than tree

(same state can be reached through multiple paths)

16

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do

if no candidates for expansion then return failure

choose leaf node for expansion according to strategy

if node contains goal state then return solution

else expand the node and add resulting nodes to the search tree

enddo

17

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do

if no candidates for expansion then return failure

choose leaf node for expansion according to strategy

if node contains goal state then return solution

else expand the node and add resulting nodes to the search tree

enddo

18

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do

if no candidates for expansion then return failure

choose leaf node for expansion according to strategy

if node contains goal state then return solution

else expand the node and add resulting nodes to the search tree

enddo

←←←← Determines search process

19

State space vs. search tree

� A state corresponds to a configuration of the world

� A node is a data structure in a search tree

�e.g. node= <state, parent-node, action, path-cost, depth>

20

Search strategies

� A search strategy is defined by picking the order of node expansion

� Problem-solving performance is measured in four ways:

� Completeness: Is a solution found if one exists?

� Optimality: Does the strategy find the optimal solution?

� Time Complexity: How long does it take to find a solution?

� Space Complexity: How much memory is needed to perform the search?

� Time and space complexity are measured in terms of problem difficulty defined
by:

� b - branching factor of the search tree

� d - depth of the shallowest goal node

� m - maximum length of any path in the state space

21

Uninformed search strategies

� Uninformed search (or blind search)

�Strategies have no additional information about states
beyond that provided in the problem definition

�Informed (or heuristic) search strategies know whether
one state is more promising than another

� Uninformed strategies (defined by order in which nodes are expanded):

�Breadth-first search

�Uniform-cost search

�Depth-first search

�Depth-limited search

�Iterative deepening search

�Bidirectional search

22

Breadth-first search

� Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue

A

23

Breadth-first search

� Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue

A

B C

24

Breadth-first search

� Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue

A

B C

D E

25

Breadth-first search

� Expand shallowest unexpanded node

� Implementation: fringe is a FIFO queue

A

B C

D
E F G

26

Breadth-first search

�Completeness: is a solution always found if one exists?

�YES

�If shallowest goal node is at some finite depth

d

�If branching factor b is finite

�BF search is optimal if the path cost is a non-

decreasing function of the depth of the node

27

Breadth-first search

� Time complexity

� Assume a state space where every state has b successors

�Assume solution is at depth d

�Worst case: expand all but the last node at depth d

�Total number of nodes generated:

� Space complexity: every node generated must remain in

memory, so same as time complexity

b + b
2

+ b
3

+ ...+ b
d

+ (bd +1
− b) = O(bd +1)

28

Breadth-first search

� Memory requirements are a bigger problem than execution time

� Exponential complexity search problems cannot be solved by BF

search (or any uninformed search method) for any but the smallest

instances

1 exabyte3523 years101514

10 petabytes35 years101312

101 terabytes129 days101110

1 terabyte31 hours1098

10 gigabytes19 minutes1076

106 megabytes11 seconds1111004

1 megabyte0.11 seconds11002

MEMORYTIMENODESDEPTH

29

Uniform-cost search

� Extension of BF-search:

�Expand node with lowest path cost

� Implementation: fringe = queue ordered by path

cost

�UC-search is the same as BF-search when all step-

costs are equal

30

Uniform-cost search

� Completeness:

�YES, if step-cost > ε

� Time and space complexity:

�Assume C* is the cost of the optimal solution

�Assume that every action costs at least ε

�Worst-case:

� Optimality:

�nodes expanded in order of increasing path cost

�YES, if complete

O(bC */ε)

31

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

32

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

33

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

34

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A
B C

D E

H I

35

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B
C

D E

H I

36

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A
B

C

D E

H I

37

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

38

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

39

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

40

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

41

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

42

Depth-first search

� Expand deepest unexpanded node

� Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M

43

DF-search: evaluation

�Completeness:

�Is a solution always found if one exists?

�No (unless search space is finite and no loops are

possible)

�Optimality:

�Is the least-cost solution always found?

�No

44

DF-search: evaluation

� Time complexity:

�In general, time is terrible if m (maximal depth)

is much larger than d (depth of shallowest

solution)

�But if there exist many solutions then faster than

BF-search

� Space complexity:

�Backtracking search uses even less memory (one

successor instead of all b)

O(bm +1)

O(bm)

45

Depth-limited search

�DF-search with depth limit l

�i.e. nodes at depth l have no successors

�Problem knowledge can be used

� Solves the infinite-path problem

� If l < d then incompleteness results

� Time complexity:

� Space complexity:
O(bl)

O(bl)

46

Depth-limited search with l=2

47

48

49

G

50

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-
STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff

cutoff_occurred? ← false

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

else if DEPTH[node] == limit then return cutoff

else for each successor in EXPAND(node, problem) do

result ← RECURSIVE-DLS(successor, problem, limit)

if result == cutoff then cutoff_occurred? ← true

else if result ≠ failure then return result

if cutoff_occurred? then return cutoff else return failure

51

Iterative deepening search

�A general strategy to find best depth limit l

�Goal is found at depth d, the depth of the

shallowest goal-node

�Often used in combination with DF-search

�Combines benefits of DF- and BF-search

52

Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure

inputs: problem

for depth ← 0 to ∞ do

result ← DEPTH-LIMITED_SEARCH(problem, depth)

if result ≠ cuttoff then return result

53

ID-search, example

� Limit=0

54

ID-search, example

� Limit=1

55

ID-search, example

� Limit=2

56

ID-search, example

� Limit=3

57

ID search: evaluation

� Time complexity:

�Algorithm seems costly due to repeated generation of certain
states

�Node generation:

�level d: once

�level d-1: 2

�level d-2: 3

�…

�level 2: d-1

�level 1: d

N(IDS) = (d)b + (d −1)b2
+ ...+ (1)bd

N(BFS) = b + b
2

+ ...+ b
d

+ (bd +1
− b)

O(bd)

N(IDS) = 50 + 400 + 3000 + 20000 +100000 =123450

N(BFS) =10 +100 +1000 +10000 +100000 + 999990 =1111100

Comparison for b=10 and d=5, solution at far right

58

Summary of algorithms

YES

bd/2

bd/2

YES*

Bidirectional

search

NO

bm

bm

NO

Depth-First

YESNOYES*YES*Optimal?

bdblbC*/ebd+1Space

bdblbC*/ebd+1Time

YESYES,

if l ≥ d

YES*YES*Complete?

Iterative

deepening

Depth-limitedUniform-costBreadth-FirstCriterion

59

Repeated states

� Failure to detect repeated states can turn solvable problems

into unsolvable ones

60

Graph search algorithm

�Closed list stores all expanded nodes

function GRAPH-SEARCH(problem,fringe) return a solution or failure

closed ← an empty set

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

if STATE[node] is not in closed then

add STATE[node] to closed

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

61

Graph search, evaluation

� Optimality:

�GRAPH-SEARCH discards newly discovered paths

�This may result in a sub-optimal solution, except
when uniform-cost search or BF-search with
constant step cost is used

� Time and space complexity:

�proportional to the size of the state space

(may be much smaller than O(bd))

�DF- and ID-search with closed list no longer have linear
space requirements since all nodes are stored in the
closed list

62

Best-first search

�Node is selected for expansion based on an

evaluation function f(n)

� Evaluation function estimates distance to the goal

�Choose node which appears best

� Implementation:

�fringe is a priority queue sorted in ascending

order of f-values

63

A heuristic function h(n)

� Dictionary defn: “A rule of thumb, simplification,

or educated guess that reduces or limits the search

for solutions in domains that are difficult and

poorly understood”

� For best-first search:

h(n) = estimated cost of the cheapest path from

node n to goal node

64

Romania with step costs in km

� hSLD=straight-line distance

heuristic

� hSLD cannot be computed

from the problem

description itself

� In greedy best-first

search f(n)=h(n)

�Expand node that is

closest to goal

65

Greedy search example

� Greedy search to solve the Arad to Bucharest problem

Arad (366)

66

Greedy search example

� Greedy best-first search will select Sibiu

Arad

Sibiu(253)

Timisoara

(329)

Zerind(374)

67

Greedy search example

� Greedy best-first search will select Fagaras

Arad

Sibiu

Arad

(366)
Fagaras

(176)

Oradea

(380)

Rimnicu Vilcea

(193)

68

Greedy search example

� Goal reached

�For this example no node is expanded that is not on the

solution path

�But not optimal (see Arad, Sibiu, Rimnicu Vilcea,

Pitesti)

Arad

Sibiu

Fagaras

Sibiu

(253)

Bucharest

(0)

69

Greedy search: evaluation

� Complete or optimal: no

�Minimizing h(n) can result in false starts, e.g. Iasi to

Fagaras

�Check on repeated states

70

Greedy search: evaluation

� Time and space complexity:

�In the worst case all the nodes in the search tree

are generated:

(m is maximum depth of search tree and b is

branching factor)

�But: choice of a good heuristic can give dramatic

improvement

O(bm)

71

A* search

� Best-known form of best-first search

� Idea: avoid expanding paths that are already expensive

� Evaluation function f(n)=g(n) + h(n)

�g(n): the cost (so far) to reach the node

�h(n): estimated cost to get from the node to the goal

�f(n): estimated total cost of path through n to goal

� A* search is both complete and optimal if h(n) satisfies

certain conditions

72

A* search

�A* search is optimal if h(n) is an admissible
heuristic

�A heuristic is admissible if it never overestimates
the cost to reach the goal

�h(n) <= h*(n) where h*(n) is the true cost from n

�Admissible heuristics are optimistic about the cost
of solving the problem

� e.g. hSLD(n) never overestimates the actual road
distance

73

Romania example

74

A* search example

75

A* search example

76

A* search example

77

A* search example

78

A* search example

79

A* search example

80

A* and GRAPH-SEARCH

� GRAPH-SEARCH discards new paths to a repeated
state

�So may discard the optimal path

� Solutions:

�Remove more expensive of the two paths

�But requires extra book-keeping

�Ensure that the optimal path to any repeated state
is always the first one followed

�Requires extra condition on h(n): consistency
(or monotonicity)

81

Consistency

� A heuristic is consistent if

� If h is consistent, we have

� i.e. f(n) is nondecreasing along any path

�and so A* using GRAPH-SEARCH expands nodes in non-
decreasing order of f(n)

h(n) ≤ c(n,a,n') + h(n')

f (n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

≥ f (n)

82

A* search: evaluation

�Complete: yes

�Unless there are infinitely many nodes with

f<f(G)

�Since bands of increasing f are added

�Optimal: yes

�A* is optimally efficient for any given h(n): no

other optimal algorithm is guaranteed to expand

fewer nodes

83

A* search: evaluation

� Time complexity:

�number of nodes expanded is still exponential in

length of solution

� Space complexity:

�All generated nodes are kept in memory

�A* usually runs out of space before running out

of time

