
Artificial Intelligence
Unit 2: Inferences in Propositional and First Order Logic

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org



Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and this 
unit will be available shortly from the following URL:

� http://www.geocities.com/syedatnsu/

Acknowledgements
�These lecture notes contain material from the following sources

� Intelligent Systems by S.Clark, 2005

� Logical Programming and Artificial Intelligence by S. Kapetanakis, 
2004

� Artificial Intelligence: A modern approach by S. Russell and P. 
Norvig, International Edition, 2nd edition

© 2006 Syedur Rahman



Resolution

� Resolution is a method of inference of queries from 
knowledge bases in propositional logic that can be 
used when the statements are in Conj. Normal Form.

� The Resolution Rule states that the clauses x∨∨∨∨y and 
z∨¬∨¬∨¬∨¬y can be resolved to x∨∨∨∨z

� Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)�

But not (A ∧ ¬B) ∨ (¬C ∨ ¬D)�
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Remember the Connectives and Rules in Propositional Logic
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Resolution Algorithm

� To show KB ╞ α we show that KB∧∧∧∧¬α is unsatisfiable (where α is 

a query)

�Convert KB∧∧∧∧¬α into CNF

�Apply resolution rule to resulting clauses

�Continue until there are no new clauses that can be added (in 
which case KB does not entail α)

�Or until the empty clause is derived (in which case KB does 
entail α)   

For Example

KB: p

q

p ∧∧∧∧ q ⇒⇒⇒⇒ r

Query: r
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Consider the following resolution

Knowledge Base:

p ∨∨∨∨ q

p ⇒ x

¬q

x ⇒ y

Query:

y
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Consider the following resolution

Knowledge Base:

p

p ⇒ x

¬q

z ⇒ y

x ⇒ y

Query:

z
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Example Conversion to CNF

B1,1 ⇔⇔⇔⇔ (P1,2 ∨∨∨∨ P2,1)�

≡ (Eliminate ⇔⇔⇔⇔, replacing α ⇔⇔⇔⇔ β with (α⇒⇒⇒⇒ β)∧∧∧∧(β⇒⇒⇒⇒ α) )
(B1,1 ⇒⇒⇒⇒ (P1,2 ∨∨∨∨ P2,1)) ∧∧∧∧ ((P1,2 ∨∨∨∨ P2,1) ⇒⇒⇒⇒ B1,1)�

≡ (Eliminate ⇒⇒⇒⇒, replacing α⇒⇒⇒⇒ β with ¬¬¬¬α ∨∨∨∨ β )
(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ (¬¬¬¬(P1,2 ∨∨∨∨ P2,1) ∨∨∨∨ B1,1)�

≡ (Move ¬¬¬¬ inwards using de Morgan's rules and double-
negation)

(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ ((¬¬¬¬P1,2  ∧∧∧∧ ¬¬¬¬P2,1) ∨∨∨∨ B1,1)�

≡ (Apply distributivity law (∧∧∧∧ over ∨∨∨∨) and flatten)
(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ (¬¬¬¬P1,2 ∨∨∨∨ B1,1) ∧∧∧∧ (¬¬¬¬P2,1 ∨∨∨∨ B1,1)�
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Resolution example

� KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1                             α = ¬P1,2

� Empty clause is equivalent to false and therefore the 
argument is valid
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Horn Clauses

A Horn clause is a disjunction of literals of which at most one is 
positive
� (¬x ∨ ¬y ∨ z) is a Horn clause

� (¬z ∨ a ∨ b) is not a Horn clause

� Every Horn clause can be written as an implication whose premise
is a conjunction of positive literals and whose conclusion is a single 
positive literal
� (¬x ∨ ¬y ∨ z) can be written as (x ∧ y) ⇒ z

� The positive literal is called the head and the negative literals form 

the body of a horn clause. 

� In a knowledge base, a definite clause with no negative literals is 
called a fact (E.g. x, y) as opposed to rules e.g. (¬x ∨ ¬y ∨ z), (x ∧ y) ⇒ z

� Real-world knowledge bases often contain clauses of this restricted 
kind



Horn Clauses

� Inference with Horn clauses can be done through 
forward chaining and backward chaining algorithms

� Both algorithms have inference steps which are 
easy to follow for humans

� Both forward and backward chaining algorithms are 
sound and complete

� Deciding entailment with Horn clauses can be done in 
time that is linear in the size of the knowledge base

� Horn clauses form the basis for the logic programming 
language Prolog



Inference Rules

modus ponens

from a and a⇒b derive b

modus tollens

from a⇒b and ¬¬¬¬b derive ¬¬¬¬a

and-introduction

from a and b derive a∧∧∧∧b

and-elimination

from a∧∧∧∧b derive a



Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its 
conclusion to the KB, until query is found. Consider the following 
example:

Knowledge Base:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query: A ∧∧∧∧ C



Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its 
conclusion to the KB, until query is found. Consider the following 
example:

Knowledge Base:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query: A ∧∧∧∧ C



Forward Chaining Derivation

KB:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query:

A ∧∧∧∧ C



Forward Chaining Derivation



Forward chaining with AND-OR graph

� Idea: fire any rule whose premises are satisfied in the KB

�add its conclusion to the KB, until query is found

Query: Q
Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph



Forward chaining with AND-OR graph

� Idea: fire any rule whose premises are satisfied in the KB

�add its conclusion to the KB, until query is found

Query: Q
Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph



Data-Driven Reasoning

� Forward chaining is an example of data-driven 
reasoning

�Reasoning starts with the known data

�Can be used by an agent to derive conclusions from 
percepts without a specific query in mind

�Humans use some data-driven reasoning (while keeping 
forward chaining under control)

� In contrast, backward chaining is goal-directed
reasoning

�Works backwards from the query



Backward chaining

Work backwards from the query q
� If q is known to be true, we’re done
� Otherwise find implications in KB which conclude q
� If premises of one of these implications can be proved true 

(by backward chaining) q is true

Consider the previous example
Knowledge Base:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query: A ∧∧∧∧ C



Backward chaining

Work backwards from the query q
� If q is known to be true, we’re done
� Otherwise find implications in KB which conclude q
� If premises of one of these implications can be proved true 

(by backward chaining) q is true

Consider the previous example
Knowledge Base:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query: A ∧∧∧∧ C



Backward chaining Derivation
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KB:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query: 

A ∧∧∧∧ C
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Backward chaining
Work backwards from the query q

� If q is known to be true, we’re done

� Otherwise find implications in KB which conclude q

� If premises of one of these implications can be proved true (by backward chaining)
q is true

Query: Q

Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph



Backward chaining
Work backwards from the query q

� If q is known to be true, we’re done

� Otherwise find implications in KB which conclude q

� If premises of one of these implications can be proved true (by backward chaining)
q is true

Query: Q

Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph



Forward vs. backward chaining

� FC is data-driven, automatic, unconscious processing

�e.g. object recognition, routine decisions�

� FC may do lots of work that is irrelevant to the goal 

� BC is goal-driven, appropriate for problem-solving

�e.g. Where are my keys? What shall I do now?
�

� Complexity of BC can be much less than linear in size of KB

�Process considers only relevant facts

� Agent should use both FC and BC, limiting forward reasoning to 
generation of facts that are likely to be relevant to queries solved by 
backward chaining



First-order logic

� Propositional logic assumes the world contains facts

� First-order logic (much like natural language) assumes 
the world contains:�

�Objects: people, houses, numbers, colours, football 
games, wars, …�

�Relations: red, round, prime, brother of, bigger than, 
part of, comes between, …

�Functions: father of, best friend, one more than, plus, 
…�



Syntax of FOL: Basic elements

� Constant symbols: John, 2, Richard, Oxford,... 

� Predicate symbols: Brother, >, Male, Female...

� Function symbols: PosSqrt, LeftLegOf, Length...

� Variables: x, y, a, b,...

� Connectives: ¬, ⇒, ∧, ∨, ⇔

� Equality: = 

� Quantifiers: ∀, ∃



Atomic sentences

Atomic sentence = predicate (term1,...,termn) 

or term1 = term2

Term            = function (term1,...,termn) 

or constant or variable

Example

� Sibling(John,Richard), Brother(John,Richard)

� Male(Richard), Male(John)

� > (Length(LeftLegOf(Richard)),Length(LeftLegOf(John)))



Complex sentences

� Complex sentences are made from atomic sentences 

using connectives�

¬S, S1 ∧ S2, S1 ∨ S2, S1⇒ S2, S1 ⇔ S2

� e.g. 

Sibling(John,Richard)  ⇒ Sibling(Richard,John)

>(1,2) ∨ ≤(1,2)

>(1,2) ∧ ¬ >(1,2) 



Truth in first-order logic

� Sentences are true with respect to a model and an 
interpretation

� Model contains objects (domain elements) and relations among 
them�

� Interpretation specifies referents for
constant symbols → objects�

predicate symbols → relations�

function symbols → functional relations�

� An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate�



Quantifiers in First Order Logic

∀ ∀ ∀ ∀ Universal quantifier: A formula ∀x,p(x) reads ‘for all values of x
in a particular universe of discourse or domain, p(x) is true’. 

∀x,dishonest(x) reads ‘everyone/thing is dishonest’ but if the domain of x is 
specified as politicians then it reads “all politicians are dishonest’

∀x,(horse(x) ⇒ quadruped(x)) reads ‘if x is a horse then it is a quadruped’
or in other words ‘all horses are quadrupeds’

∃ ∃ ∃ ∃ Existential quantifier: A formula ∃x,p(x) reads ‘there exists a 
value of x such that p(x) is true’.

∃x, horse(x) reads ‘there is a horse’

∃x,(horse(x) ∧∧∧∧ colour(x)=black) reads ‘there is a horse which is black’

Binding Variables: A variable x is bound, when a quantifier is used 
on the variable, otherwise it is free. 

In ∀x,p(x,y), x is bound but y is free.
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Another Example

Remember the example:

age(s,x) ≡ ‘s is x years old’

adult(s) ≡ ‘s is at least 18 years old’

How do we define adult(s) using logic?
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Another Example

Remember the example:

age(s,x) ≡ ‘s is x years old’

adult(s) ≡ ‘s is at least 18 years old’

How do we define adult(s) using logic?

adult(s) ≡ s has an age x ∧∧∧∧ x ≥ 18

adult(s) ≡ ∃x,(age(s,x) ∧∧∧∧ x ≥ 18)
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Quantifiers and De Morgan

De Morgan’s law extends over quantifiers:

∃x,¬¬¬¬p(x) ≡ ¬¬¬¬(∀x,p(x))

∀x,¬¬¬¬p(x) ≡ ¬¬¬¬(∃x,p(x))

Example:

¬¬¬¬(∃x,unicorn(x)) ≡ ∀x,¬¬¬¬unicorn(x) ≡ there is no unicorn
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Restricting Predicates

Often the range of values for a predicate are restricted:

∀x,(p(x) ⇒ q(x)) reads ‘for all x of type p, q(x) is true’.

∃x,(p(x) ∧∧∧∧ q(x)) reads ‘for some x of type p, q(x) is true’.

Extended De Morgan works for restricted predicates too:

¬¬¬¬(∀x,(p(x) ⇒ q(x))) ≡ ∃x, ¬¬¬¬(p(x) ∧∧∧∧ q(x)) 

¬¬¬¬(∃x,(p(x) ∧∧∧∧ q(x))) ≡ ∀x, ¬¬¬¬(p(x) ⇒ q(x)) 
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Commutability

Quantifiers may commutate only in case of similar ones.

Therefore the following are true:

∃∃∃∃x, ∃∃∃∃y, p(x,y) ≡ ∃∃∃∃y, ∃∃∃∃x, p(x,y)

∀∀∀∀x, ∀∀∀∀y, p(x,y) ≡ ∀∀∀∀y, ∀∀∀∀x, p(x,y)

And the following is NOT true:

∀∀∀∀x, ∃∃∃∃y, p(x,y) ≡ ∃∃∃∃y, ∀∀∀∀x, p(x,y)
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Witness and Counter-examples

For an existential formula, ∃x,p(x) a witness is a 
value of x making p(x) true, thereby proving 

∃x,p(x) true as a whole.

For a universal formula, ∀x,p(x) a counter-
example is a value of x making p(x) false, 

thereby proving ∀x,p(x) false as a whole.
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Uniqueness

The Uniqueness Quantifier ∃!∃!∃!∃!: A formula 
∃∃∃∃!x,p(x) reads ‘there exists exactly one value of x
such that p(x) is true’ given a certain domain of x.

∃∃∃∃!x,p(x) can be expressed as:

(∃(∃(∃(∃x p(x)) ∧∧∧∧ (∀y ∀z (p(y) ∧∧∧∧ p(z) ⇒ y=z))

and more formally as:

∃∃∃∃x p(x) ∧∧∧∧ ∀y (x≠y) ⇒ ¬¬¬¬p(y) 
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More examples with quantifiers

Given the domain of real numbers 

What do the following mean:

�∀∀∀∀x ∃∃∃∃y (x<y)

�∀∀∀∀x ∀∀∀∀y ∃∃∃∃z (z = x + y)

�∀∀∀∀x ∀∀∀∀y (x>0 ∧∧∧∧ y<0 ⇒ x-y>0)

Write the following using quantifiers

�The product of two positive numbers is positive.

�Every pair of numbers has a product which is a number

�There is no largest number
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More examples with quantifiers

Given loves(x, y) reads “x loves y” with the domain of people

What do the following mean?

�∀∀∀∀x ∀∀∀∀y ∀z loves(x, y) ∧∧∧∧ loves(x, z) ⇒ z=y

�∀∀∀∀x ∃∃∃∃y loves(x, y) ∧∧∧∧ ∀z (z≠y) ⇒ ¬¬¬¬loves(x, z) 

Using loves(x, y), define a predicate unloved(x) which reads 

“x is an unloved person”, i.e. there is no one that loves x.
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Expanding Quantifiers





Introduction to Inference in FOL

�Substitutions, instantiation and unification

�Introduction to Logic Programming

�Resolution in First Order Logic

�Forward/Backward Chaining in First 
Order Logic



Substitutions

A substitution θ is a set of the form {x1/y1, x2/y2, x3/y3,…, 

xn/yn}, where x’s are variables and y’s are variables or 

constants, such that when θ is applied to a sentence α, it 

returns a sentence with all x’s replaced with 

corresponding y’s.

E.g. θ = {x/Tom, y/z}

α = ∀∀∀∀x∀∀∀∀y parent(x,y) ⇒ child(y,x) 

Subst(θ, α) = ∀∀∀∀z parent(Tom, z) ⇒ child(z, Tom) 



Logic Programming
Declarative languages such as Prolog are used for logic programming, where 

rather than carrying out a set of instructions (as in procedural languages such 

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent

Jill is Tom’s Parent

x is y’s parent iff y is x’s child

Query: Prolog Queries:      Answers:

Is Tom Jill’s child? Yes

Is Jill Tom’s child? No

Does Jill have children, who are they? Yes X=tom, No

Does Tom have children, who are they? No

Does Tom have parents, who are they? Yes X=mark, 

X=jill, No© 2006 Syedur Rahman



Logic Programming
Declarative languages such as Prolog are used for logic programming, where 

rather than carrying out a set of instructions (as in procedural languages such 

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent parent(mark, tom)

Jill is Tom’s Parent parent(jill, tom)

x is y’s parent iff y is x’s child child(X,Y) :- parent(Y,X)

i.e. ∀x∀y parent(x,y)⇔child(y,x) parent(X,Y) :- child(Y,X)

Query: Prolog Queries:      Answers:

Is Tom Jill’s child? child(tom, jill) Yes

Is Jill Tom’s child? child(jill, tom) No

Does Jill have children, who are they? child(X, jill) Yes X=tom, No

Does Tom have children, who are they? child(X, tom) No

Does Tom have parents, who are they? parents(X,tom)        Yes X=mark, 

X=jill, No© 2006 Syedur Rahman



Logic Programming
Declarative languages such as Prolog are used for logic programming, where 

rather than carrying out a set of instructions (as in procedural languages such 

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent parent(mark, tom)

Jill is Tom’s Parent parent(jill, tom)

x is y’s parent iff y is x’s child child(X,Y) :- parent(Y,X)

i.e. ∀x∀y parent(x,y)⇔child(y,x) parent(X,Y) :- child(Y,X)

Query: Prolog Queries:      Answers:

Is Tom Jill’s child? child(tom, jill) Yes

Is Jill Tom’s child? child(jill, tom) No

Does Jill have children, who are they? child(X, jill) Yes X=tom, No

Does Tom have children, who are they? child(X, tom) No

Does Tom have parents, who are they? parents(X,tom)        Yes X=mark, 

X=jill, No



Universal instantiation (UI)

� Every instantiation of a universally quantified sentence 
is entailed by it:�

∀v α

Subst({v/g}, α)�
for any variable v and ground term g�

� E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:��

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

.

.

.



Existential instantiation (EI)

� For any sentence α, variable v, and constant symbol k 
that does not appear elsewhere in the knowledge 
base:�

∃v α
Subst({v/k}, α)�

� E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)�

provided C1 is a new constant symbol, called a 
Skolem constant�



Reduction to propositional inference

Suppose the KB contains just the following:�
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)

Greedy(John)

Brother(Richard,John)�

Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)�

The new KB is propositionalized: proposition symbols are�
�

King(John), Greedy(John), Evil(John), King(Richard), etc.�

�



Reduction

� Every FOL KB can be propositionalized so as to preserve entailment

� A ground sentence is entailed by new KB iff entailed by original KB

� Idea: propositionalize KB and query, apply resolution, return result�

� Problem: with function symbols, there are infinitely many ground terms

� e.g., Father(Father(Father(John)))�



Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences

e.g., from:��
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)

∀y Greedy(y)
Brother(Richard,John)�

it seems obvious that Evil(John), but propositionalization produces lots of facts such 
as Greedy(Richard) that are irrelevant�

With p k-ary predicates and n constants, there are p·nk instantiations



Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) 

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�



Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�



Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�



Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�



Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) {fail}�

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�



Unification

� To unify Knows(John,x) and Knows(y,z),�
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}�

� The first unifier is more general than the second

�It places fewer restrictions on the values of the 
variables

� There is a single most general unifier (MGU) that is 
unique up to renaming of variables�

MGU = { y/John, x/z }�



Resolution in First Order Logic

Conversion to Conjunctive Normal Form

Step 1: Eliminate implications

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

≡ ∀x ¬[King(x) ∧ Greedy(x)] ∨ Evil(x)

≡ ∀x ¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Step 2: Move ¬¬¬¬ inwards

¬¬¬¬∃x, P(x) becomes ∀x, ¬¬¬¬P(x)

¬¬¬¬∀x,P(x) becomes ∃x, ¬¬¬¬P(x)



Resolution in First Order Logic

Step 3: Standardise Variables

If you have a sentence (∀x P(x)) ∧ (∃x Q(x)) that use the same 
bound variable name twice, change the name of one of the 
variables. E.g. to (∀x P(x)) ∧ (∃y Q(y)) 

Step 4: Skolemization

This is the process of removing existential quantifiers and replacing 
the variables with new constants. E.g.

∃x P(x) becomes P(C), where C is a Skolem constant

However the meaning is completely changed if we use a constant C
and turn ∀y ∃x P(x, y) into ∀y Q(C, y). 

Therefore we must use a Skolem function F(y) meaning the x for the 
particular y. i.e. ∀y Q(F(x), y). 



Resolution in First Order Logic

Step 5: Drop Universal Quantifiers

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) becomes:

King(x) ∧ Greedy(x) ⇒ Evil(x)

Step 6: Distribute ∧∧∧∧ over ∨∨∨∨

E.g. (p ∧ q) ∨ r becomes (p ∨ r) ∧ (q ∨ r)



An example

The law says it is a crime for an American to sell 

weapons to hostile nations. The country Nono, an enemy 

of America, has some missiles, and all of its missiles 

were sold to it Colonel West, who is American.

Prove that West is a criminal.



The sentences



The Resolution



Forward Chaining In First Order Logic



Forward Chaining In First Order Logic



Backward Chaining In First Order Logic


