
Artificial Intelligence
Unit 2: Inferences in Propositional and First Order Logic

Syedur Rahman
Lecturer, CSE Department

North South University
syedur.rahman@wolfson.oxon.org

Artificial Intelligence: Lecture Notes

The lecture notes from the introductory lecture and this
unit will be available shortly from the following URL:

� http://www.geocities.com/syedatnsu/

Acknowledgements
�These lecture notes contain material from the following sources

� Intelligent Systems by S.Clark, 2005

� Logical Programming and Artificial Intelligence by S. Kapetanakis,
2004

� Artificial Intelligence: A modern approach by S. Russell and P.
Norvig, International Edition, 2nd edition

© 2006 Syedur Rahman

Resolution

� Resolution is a method of inference of queries from
knowledge bases in propositional logic that can be
used when the statements are in Conj. Normal Form.

� The Resolution Rule states that the clauses x∨∨∨∨y and
z∨¬∨¬∨¬∨¬y can be resolved to x∨∨∨∨z

� Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)�

But not (A ∧ ¬B) ∨ (¬C ∨ ¬D)�

© 2006 Syedur Rahman

Remember the Connectives and Rules in Propositional Logic

© 2006 Syedur Rahman

Resolution Algorithm

� To show KB ╞ α we show that KB∧∧∧∧¬α is unsatisfiable (where α is

a query)

�Convert KB∧∧∧∧¬α into CNF

�Apply resolution rule to resulting clauses

�Continue until there are no new clauses that can be added (in
which case KB does not entail α)

�Or until the empty clause is derived (in which case KB does
entail α)

For Example

KB: p

q

p ∧∧∧∧ q ⇒⇒⇒⇒ r

Query: r
© 2006 Syedur Rahman

Consider the following resolution

Knowledge Base:

p ∨∨∨∨ q

p ⇒ x

¬q

x ⇒ y

Query:

y

© 2006 Syedur Rahman

Consider the following resolution

Knowledge Base:

p

p ⇒ x

¬q

z ⇒ y

x ⇒ y

Query:

z

© 2006 Syedur Rahman

Example Conversion to CNF

B1,1 ⇔⇔⇔⇔ (P1,2 ∨∨∨∨ P2,1)�

≡ (Eliminate ⇔⇔⇔⇔, replacing α ⇔⇔⇔⇔ β with (α⇒⇒⇒⇒ β)∧∧∧∧(β⇒⇒⇒⇒ α))
(B1,1 ⇒⇒⇒⇒ (P1,2 ∨∨∨∨ P2,1)) ∧∧∧∧ ((P1,2 ∨∨∨∨ P2,1) ⇒⇒⇒⇒ B1,1)�

≡ (Eliminate ⇒⇒⇒⇒, replacing α⇒⇒⇒⇒ β with ¬¬¬¬α ∨∨∨∨ β)
(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ (¬¬¬¬(P1,2 ∨∨∨∨ P2,1) ∨∨∨∨ B1,1)�

≡ (Move ¬¬¬¬ inwards using de Morgan's rules and double-
negation)

(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ ((¬¬¬¬P1,2 ∧∧∧∧ ¬¬¬¬P2,1) ∨∨∨∨ B1,1)�

≡ (Apply distributivity law (∧∧∧∧ over ∨∨∨∨) and flatten)
(¬¬¬¬B1,1 ∨∨∨∨ P1,2 ∨∨∨∨ P2,1) ∧∧∧∧ (¬¬¬¬P1,2 ∨∨∨∨ B1,1) ∧∧∧∧ (¬¬¬¬P2,1 ∨∨∨∨ B1,1)�

© 2006 Syedur Rahman

Resolution example

� KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 α = ¬P1,2

� Empty clause is equivalent to false and therefore the
argument is valid

© 2006 Syedur Rahman

Horn Clauses

A Horn clause is a disjunction of literals of which at most one is
positive
� (¬x ∨ ¬y ∨ z) is a Horn clause

� (¬z ∨ a ∨ b) is not a Horn clause

� Every Horn clause can be written as an implication whose premise
is a conjunction of positive literals and whose conclusion is a single
positive literal
� (¬x ∨ ¬y ∨ z) can be written as (x ∧ y) ⇒ z

� The positive literal is called the head and the negative literals form

the body of a horn clause.

� In a knowledge base, a definite clause with no negative literals is
called a fact (E.g. x, y) as opposed to rules e.g. (¬x ∨ ¬y ∨ z), (x ∧ y) ⇒ z

� Real-world knowledge bases often contain clauses of this restricted
kind

Horn Clauses

� Inference with Horn clauses can be done through
forward chaining and backward chaining algorithms

� Both algorithms have inference steps which are
easy to follow for humans

� Both forward and backward chaining algorithms are
sound and complete

� Deciding entailment with Horn clauses can be done in
time that is linear in the size of the knowledge base

� Horn clauses form the basis for the logic programming
language Prolog

Inference Rules

modus ponens

from a and a⇒b derive b

modus tollens

from a⇒b and ¬¬¬¬b derive ¬¬¬¬a

and-introduction

from a and b derive a∧∧∧∧b

and-elimination

from a∧∧∧∧b derive a

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its
conclusion to the KB, until query is found. Consider the following
example:

Knowledge Base:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query: A ∧∧∧∧ C

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its
conclusion to the KB, until query is found. Consider the following
example:

Knowledge Base:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query: A ∧∧∧∧ C

Forward Chaining Derivation

KB:

1. E ⇒ D

2. E ⇒ B
3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query:

A ∧∧∧∧ C

Forward Chaining Derivation

Forward chaining with AND-OR graph

� Idea: fire any rule whose premises are satisfied in the KB

�add its conclusion to the KB, until query is found

Query: Q
Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph

Forward chaining with AND-OR graph

� Idea: fire any rule whose premises are satisfied in the KB

�add its conclusion to the KB, until query is found

Query: Q
Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph

Data-Driven Reasoning

� Forward chaining is an example of data-driven
reasoning

�Reasoning starts with the known data

�Can be used by an agent to derive conclusions from
percepts without a specific query in mind

�Humans use some data-driven reasoning (while keeping
forward chaining under control)

� In contrast, backward chaining is goal-directed
reasoning

�Works backwards from the query

Backward chaining

Work backwards from the query q
� If q is known to be true, we’re done
� Otherwise find implications in KB which conclude q
� If premises of one of these implications can be proved true

(by backward chaining) q is true

Consider the previous example
Knowledge Base:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query: A ∧∧∧∧ C

Backward chaining

Work backwards from the query q
� If q is known to be true, we’re done
� Otherwise find implications in KB which conclude q
� If premises of one of these implications can be proved true

(by backward chaining) q is true

Consider the previous example
Knowledge Base:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E
5. C

Query: A ∧∧∧∧ C

Backward chaining Derivation

© 2006 Syedur Rahman

KB:

1. E ⇒ D

2. E ⇒ B

3. (B∧∧∧∧D) ⇒ A
4. E

5. C

Query:

A ∧∧∧∧ C

© 2006 Syedur Rahman

Backward chaining
Work backwards from the query q

� If q is known to be true, we’re done

� Otherwise find implications in KB which conclude q

� If premises of one of these implications can be proved true (by backward chaining)
q is true

Query: Q

Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph

Backward chaining
Work backwards from the query q

� If q is known to be true, we’re done

� Otherwise find implications in KB which conclude q

� If premises of one of these implications can be proved true (by backward chaining)
q is true

Query: Q

Figure: A simple knowledge base of horn clauses and corresponding AND-OR graph

Forward vs. backward chaining

� FC is data-driven, automatic, unconscious processing

�e.g. object recognition, routine decisions�

� FC may do lots of work that is irrelevant to the goal

� BC is goal-driven, appropriate for problem-solving

�e.g. Where are my keys? What shall I do now?
�

� Complexity of BC can be much less than linear in size of KB

�Process considers only relevant facts

� Agent should use both FC and BC, limiting forward reasoning to
generation of facts that are likely to be relevant to queries solved by
backward chaining

First-order logic

� Propositional logic assumes the world contains facts

� First-order logic (much like natural language) assumes
the world contains:�

�Objects: people, houses, numbers, colours, football
games, wars, …�

�Relations: red, round, prime, brother of, bigger than,
part of, comes between, …

�Functions: father of, best friend, one more than, plus,
…�

Syntax of FOL: Basic elements

� Constant symbols: John, 2, Richard, Oxford,...

� Predicate symbols: Brother, >, Male, Female...

� Function symbols: PosSqrt, LeftLegOf, Length...

� Variables: x, y, a, b,...

� Connectives: ¬, ⇒, ∧, ∨, ⇔

� Equality: =

� Quantifiers: ∀, ∃

Atomic sentences

Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)

or constant or variable

Example

� Sibling(John,Richard), Brother(John,Richard)

� Male(Richard), Male(John)

� > (Length(LeftLegOf(Richard)),Length(LeftLegOf(John)))

Complex sentences

� Complex sentences are made from atomic sentences

using connectives�

¬S, S1 ∧ S2, S1 ∨ S2, S1⇒ S2, S1 ⇔ S2

� e.g.

Sibling(John,Richard) ⇒ Sibling(Richard,John)

>(1,2) ∨ ≤(1,2)

>(1,2) ∧ ¬ >(1,2)

Truth in first-order logic

� Sentences are true with respect to a model and an
interpretation

� Model contains objects (domain elements) and relations among
them�

� Interpretation specifies referents for
constant symbols → objects�

predicate symbols → relations�

function symbols → functional relations�

� An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate�

Quantifiers in First Order Logic

∀ ∀ ∀ ∀ Universal quantifier: A formula ∀x,p(x) reads ‘for all values of x
in a particular universe of discourse or domain, p(x) is true’.

∀x,dishonest(x) reads ‘everyone/thing is dishonest’ but if the domain of x is
specified as politicians then it reads “all politicians are dishonest’

∀x,(horse(x) ⇒ quadruped(x)) reads ‘if x is a horse then it is a quadruped’
or in other words ‘all horses are quadrupeds’

∃ ∃ ∃ ∃ Existential quantifier: A formula ∃x,p(x) reads ‘there exists a
value of x such that p(x) is true’.

∃x, horse(x) reads ‘there is a horse’

∃x,(horse(x) ∧∧∧∧ colour(x)=black) reads ‘there is a horse which is black’

Binding Variables: A variable x is bound, when a quantifier is used
on the variable, otherwise it is free.

In ∀x,p(x,y), x is bound but y is free.

© 2006 Syedur Rahman

Another Example

Remember the example:

age(s,x) ≡ ‘s is x years old’

adult(s) ≡ ‘s is at least 18 years old’

How do we define adult(s) using logic?

© 2006 Syedur Rahman

Another Example

Remember the example:

age(s,x) ≡ ‘s is x years old’

adult(s) ≡ ‘s is at least 18 years old’

How do we define adult(s) using logic?

adult(s) ≡ s has an age x ∧∧∧∧ x ≥ 18

adult(s) ≡ ∃x,(age(s,x) ∧∧∧∧ x ≥ 18)

© 2006 Syedur Rahman

Quantifiers and De Morgan

De Morgan’s law extends over quantifiers:

∃x,¬¬¬¬p(x) ≡ ¬¬¬¬(∀x,p(x))

∀x,¬¬¬¬p(x) ≡ ¬¬¬¬(∃x,p(x))

Example:

¬¬¬¬(∃x,unicorn(x)) ≡ ∀x,¬¬¬¬unicorn(x) ≡ there is no unicorn

© 2006 Syedur Rahman

Restricting Predicates

Often the range of values for a predicate are restricted:

∀x,(p(x) ⇒ q(x)) reads ‘for all x of type p, q(x) is true’.

∃x,(p(x) ∧∧∧∧ q(x)) reads ‘for some x of type p, q(x) is true’.

Extended De Morgan works for restricted predicates too:

¬¬¬¬(∀x,(p(x) ⇒ q(x))) ≡ ∃x, ¬¬¬¬(p(x) ∧∧∧∧ q(x))

¬¬¬¬(∃x,(p(x) ∧∧∧∧ q(x))) ≡ ∀x, ¬¬¬¬(p(x) ⇒ q(x))

© 2006 Syedur Rahman

Commutability

Quantifiers may commutate only in case of similar ones.

Therefore the following are true:

∃∃∃∃x, ∃∃∃∃y, p(x,y) ≡ ∃∃∃∃y, ∃∃∃∃x, p(x,y)

∀∀∀∀x, ∀∀∀∀y, p(x,y) ≡ ∀∀∀∀y, ∀∀∀∀x, p(x,y)

And the following is NOT true:

∀∀∀∀x, ∃∃∃∃y, p(x,y) ≡ ∃∃∃∃y, ∀∀∀∀x, p(x,y)

© 2006 Syedur Rahman

Witness and Counter-examples

For an existential formula, ∃x,p(x) a witness is a
value of x making p(x) true, thereby proving

∃x,p(x) true as a whole.

For a universal formula, ∀x,p(x) a counter-
example is a value of x making p(x) false,

thereby proving ∀x,p(x) false as a whole.

© 2006 Syedur Rahman

Uniqueness

The Uniqueness Quantifier ∃!∃!∃!∃!: A formula
∃∃∃∃!x,p(x) reads ‘there exists exactly one value of x
such that p(x) is true’ given a certain domain of x.

∃∃∃∃!x,p(x) can be expressed as:

(∃(∃(∃(∃x p(x)) ∧∧∧∧ (∀y ∀z (p(y) ∧∧∧∧ p(z) ⇒ y=z))

and more formally as:

∃∃∃∃x p(x) ∧∧∧∧ ∀y (x≠y) ⇒ ¬¬¬¬p(y)

© 2006 Syedur Rahman

More examples with quantifiers

Given the domain of real numbers

What do the following mean:

�∀∀∀∀x ∃∃∃∃y (x<y)

�∀∀∀∀x ∀∀∀∀y ∃∃∃∃z (z = x + y)

�∀∀∀∀x ∀∀∀∀y (x>0 ∧∧∧∧ y<0 ⇒ x-y>0)

Write the following using quantifiers

�The product of two positive numbers is positive.

�Every pair of numbers has a product which is a number

�There is no largest number

© 2006 Syedur Rahman

More examples with quantifiers

Given loves(x, y) reads “x loves y” with the domain of people

What do the following mean?

�∀∀∀∀x ∀∀∀∀y ∀z loves(x, y) ∧∧∧∧ loves(x, z) ⇒ z=y

�∀∀∀∀x ∃∃∃∃y loves(x, y) ∧∧∧∧ ∀z (z≠y) ⇒ ¬¬¬¬loves(x, z)

Using loves(x, y), define a predicate unloved(x) which reads

“x is an unloved person”, i.e. there is no one that loves x.

© 2006 Syedur Rahman

Expanding Quantifiers

Introduction to Inference in FOL

�Substitutions, instantiation and unification

�Introduction to Logic Programming

�Resolution in First Order Logic

�Forward/Backward Chaining in First
Order Logic

Substitutions

A substitution θ is a set of the form {x1/y1, x2/y2, x3/y3,…,

xn/yn}, where x’s are variables and y’s are variables or

constants, such that when θ is applied to a sentence α, it

returns a sentence with all x’s replaced with

corresponding y’s.

E.g. θ = {x/Tom, y/z}

α = ∀∀∀∀x∀∀∀∀y parent(x,y) ⇒ child(y,x)

Subst(θ, α) = ∀∀∀∀z parent(Tom, z) ⇒ child(z, Tom)

Logic Programming
Declarative languages such as Prolog are used for logic programming, where

rather than carrying out a set of instructions (as in procedural languages such

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent

Jill is Tom’s Parent

x is y’s parent iff y is x’s child

Query: Prolog Queries: Answers:

Is Tom Jill’s child? Yes

Is Jill Tom’s child? No

Does Jill have children, who are they? Yes X=tom, No

Does Tom have children, who are they? No

Does Tom have parents, who are they? Yes X=mark,

X=jill, No© 2006 Syedur Rahman

Logic Programming
Declarative languages such as Prolog are used for logic programming, where

rather than carrying out a set of instructions (as in procedural languages such

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent parent(mark, tom)

Jill is Tom’s Parent parent(jill, tom)

x is y’s parent iff y is x’s child child(X,Y) :- parent(Y,X)

i.e. ∀x∀y parent(x,y)⇔child(y,x) parent(X,Y) :- child(Y,X)

Query: Prolog Queries: Answers:

Is Tom Jill’s child? child(tom, jill) Yes

Is Jill Tom’s child? child(jill, tom) No

Does Jill have children, who are they? child(X, jill) Yes X=tom, No

Does Tom have children, who are they? child(X, tom) No

Does Tom have parents, who are they? parents(X,tom) Yes X=mark,

X=jill, No© 2006 Syedur Rahman

Logic Programming
Declarative languages such as Prolog are used for logic programming, where

rather than carrying out a set of instructions (as in procedural languages such

as C, Java etc.), programs make inferences given rules and facts.

Note that Prolog variables are in uppercase and constants/predicates are in lowercase.

Knowledge base: Prolog Facts:

Mark is Tom’s parent parent(mark, tom)

Jill is Tom’s Parent parent(jill, tom)

x is y’s parent iff y is x’s child child(X,Y) :- parent(Y,X)

i.e. ∀x∀y parent(x,y)⇔child(y,x) parent(X,Y) :- child(Y,X)

Query: Prolog Queries: Answers:

Is Tom Jill’s child? child(tom, jill) Yes

Is Jill Tom’s child? child(jill, tom) No

Does Jill have children, who are they? child(X, jill) Yes X=tom, No

Does Tom have children, who are they? child(X, tom) No

Does Tom have parents, who are they? parents(X,tom) Yes X=mark,

X=jill, No

Universal instantiation (UI)

� Every instantiation of a universally quantified sentence
is entailed by it:�

∀v α

Subst({v/g}, α)�
for any variable v and ground term g�

� E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:��

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

.

.

.

Existential instantiation (EI)

� For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge
base:�

∃v α
Subst({v/k}, α)�

� E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)�

provided C1 is a new constant symbol, called a
Skolem constant�

Reduction to propositional inference

Suppose the KB contains just the following:�
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)

Greedy(John)

Brother(Richard,John)�

Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)�

The new KB is propositionalized: proposition symbols are�
�

King(John), Greedy(John), Evil(John), King(Richard), etc.�

�

Reduction

� Every FOL KB can be propositionalized so as to preserve entailment

� A ground sentence is entailed by new KB iff entailed by original KB

� Idea: propositionalize KB and query, apply resolution, return result�

� Problem: with function symbols, there are infinitely many ground terms

� e.g., Father(Father(Father(John)))�

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences

e.g., from:��
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)

∀y Greedy(y)
Brother(Richard,John)�

it seems obvious that Evil(John), but propositionalization produces lots of facts such
as Greedy(Richard) that are irrelevant�

With p k-ary predicates and n constants, there are p·nk instantiations

Unification

We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane)

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�

Unification

We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�

Unification

We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�

Unification

We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) �

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�

Unification

We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)�

θ = {x/John,y/John} works�

Unify(α,β) = θ if αθ = βθ

�

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) {fail}�

Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)�

Unification

� To unify Knows(John,x) and Knows(y,z),�
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}�

� The first unifier is more general than the second

�It places fewer restrictions on the values of the
variables

� There is a single most general unifier (MGU) that is
unique up to renaming of variables�

MGU = { y/John, x/z }�

Resolution in First Order Logic

Conversion to Conjunctive Normal Form

Step 1: Eliminate implications

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

≡ ∀x ¬[King(x) ∧ Greedy(x)] ∨ Evil(x)

≡ ∀x ¬King(x) ∨ ¬Greedy(x) ∨ Evil(x)

Step 2: Move ¬¬¬¬ inwards

¬¬¬¬∃x, P(x) becomes ∀x, ¬¬¬¬P(x)

¬¬¬¬∀x,P(x) becomes ∃x, ¬¬¬¬P(x)

Resolution in First Order Logic

Step 3: Standardise Variables

If you have a sentence (∀x P(x)) ∧ (∃x Q(x)) that use the same
bound variable name twice, change the name of one of the
variables. E.g. to (∀x P(x)) ∧ (∃y Q(y))

Step 4: Skolemization

This is the process of removing existential quantifiers and replacing
the variables with new constants. E.g.

∃x P(x) becomes P(C), where C is a Skolem constant

However the meaning is completely changed if we use a constant C
and turn ∀y ∃x P(x, y) into ∀y Q(C, y).

Therefore we must use a Skolem function F(y) meaning the x for the
particular y. i.e. ∀y Q(F(x), y).

Resolution in First Order Logic

Step 5: Drop Universal Quantifiers

∀x King(x) ∧ Greedy(x) ⇒ Evil(x) becomes:

King(x) ∧ Greedy(x) ⇒ Evil(x)

Step 6: Distribute ∧∧∧∧ over ∨∨∨∨

E.g. (p ∧ q) ∨ r becomes (p ∨ r) ∧ (q ∨ r)

An example

The law says it is a crime for an American to sell

weapons to hostile nations. The country Nono, an enemy

of America, has some missiles, and all of its missiles

were sold to it Colonel West, who is American.

Prove that West is a criminal.

The sentences

The Resolution

Forward Chaining In First Order Logic

Forward Chaining In First Order Logic

Backward Chaining In First Order Logic

